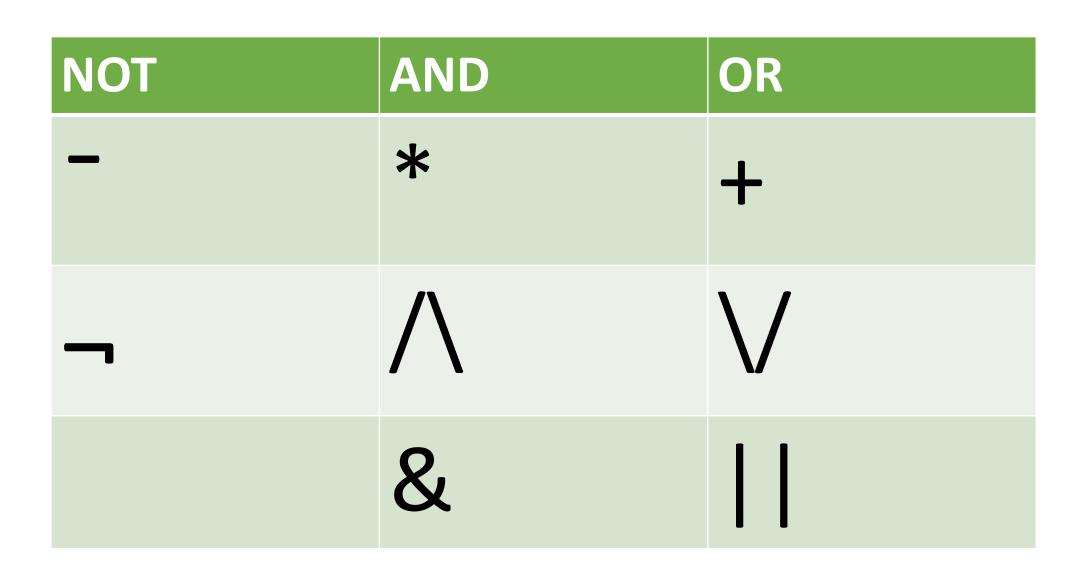
LAWS OF BOOLEAN LOGIC

Learning objectives

- ▶ 11.3.3.1 distinguish between laws of Boolean logic
- 11.3.3.2 simplify logical expressions using the laws of Boolean logic
- ▶ 11.3.3.3 Build truth tables AND, OR, NOT, NAND, NOR, XOR

Assessment criteria

Simplifies complex Boolean expression



Laws of Boolean algebra

 $A \lor 1 = 1$

 $\neg A \lor A = 1$

De Morgan's Laws

$$\neg (A \land B) = \neg A \lor \neg B$$

$$\neg (A \lor B) = \neg A \land \neg B$$

Α	В	Ā	B	A.B	Ā+B
0	0				
0	1	-			
4	0	•			
1	- ×				

Α	В	Ā	B	A+B	Ā.Ē
0	0			11	
0	1				
1	0				
1	1				

De Morgan's Laws

$$\neg (A \land B) = \neg A \lor \neg B$$

Α	в	Ā	B		Ā.Ē
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0	[

$$\neg (A \lor B) = \neg A \land \neg B$$

Α	В	Ā	B	A+B	Ā.Ē
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0		

De Morgan's Laws

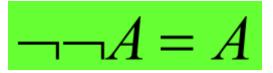
$$\neg (A \land B) = \neg A \lor \neg B$$

Α	в	Ā	B	A.B	Ā+Ē
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

$$\neg (A \lor B) = \neg A \land \neg B$$

Α	В	Ā	B	A+B	A.B
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Double complement law



DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$(\overline{x+y}) = \overline{x}\overline{y}$
Double Complement Law	$\overline{\overline{x}} =$	x

Commutative rule

 $A \wedge B = B \wedge A$

In algebra: ab=baa+b=b+

The Associativity Rule

 $(A \land B) \land C = A \land (B \land C)$

 $(A \lor B) \lor C = A \lor (B \lor C)$

In algebra: (ab)c=a(bc)(a+b)+c=a+(b+c)

Rule of distributivity

 $A \wedge (B \vee C) = A \wedge B \vee A \wedge C$

In algebra: a(b+c)=ab+ac

Formative assessment 1

Prove the law using the truth table

The laws of Boolean Logic

Identity Name	AND Form	OR Form
Identity Law	1x = x	0+x=x
Null (or Dominance) Law	0x = 0	1+ <i>x</i> = 1
Idempotent Law	XX = X	X + X = X
Inverse Law	$x\overline{x} = 0$	$x+\overline{x}=1$
Commutative Law	xy = yx	x+y=y+x
Associative Law	(xy)z = x(yz)	(x+y)+z = x+(y+z)
Distributive Law	x+yz = (x+y)(x+z)	x(y+z) = xy+xz
Absorption Law	x(x+y) = x	x+xy=x
DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$(\overline{x+y}) = \overline{x}\overline{y}$
Double Complement Law	$\overline{\overline{x}} =$	x

A.B = B.A	s of the main identities and rules The order in which two variables are ANDed makes no difference
A+B = B+A	The order in which two variables are ORed makes no difference
A.0 = 0	A variable ANDed with 0 equals 0
A+1 = 1	A variable ORed with 1 equals 1
A+0 = A	A variable ORed with 0 equals the variable
A.1 = A	A variable ANDed with 1 equals the variable
A.A = A	A variable ANDed with itself equals the variable
A + A = A	A variable ORed with itself equals the variable
$A.\overline{A} = 0$	A variable ANDed with its inverse equals 0
$A + \overline{A} = 1$	A variable ORed with its inverse equals 1
$\overline{A} = A$	A variable that is double inversed equals the variable
[A.B].C = A.[B.C]	It makes no difference how the variables are grouped together when ANDed
(A+B)+C = A+(B+C)	It makes no difference how the variables are grouped together when ORed
A.(B+C) = A.B+A.C	The expression can be distributed or factored out, meaning that variables can be moved in and out of brackets either side of the expression. In English this expression would be A AND (B OR C) = (A AND B) OR (A AND C).

How to simplify logic expression.

 $\mathbf{Q} = \mathbf{A}.\mathbf{B}.\overline{\mathbf{C}} + \mathbf{A}.\mathbf{B}.\mathbf{C} + \mathbf{A}.\overline{\mathbf{B}}$

$$\begin{split} \mathbf{Q} &= \mathbf{A}.\mathbf{B}.\overline{\mathbf{C}} + \mathbf{A}.\mathbf{B}.\mathbf{C} + \mathbf{A}.\overline{\mathbf{B}}\\ \mathbf{Q} &= \mathbf{A}.(\mathbf{B}.\overline{\mathbf{C}} + \mathbf{B}.\mathbf{C} + \overline{\mathbf{B}})\\ \mathbf{Q} &= \mathbf{A}.(\mathbf{B}.(\overline{\mathbf{C}} + \mathbf{C})) + \overline{\mathbf{B}})\\ \mathbf{Q} &= \mathbf{A}.(\mathbf{B}.(\mathbf{1}) + \overline{\mathbf{B}}) \end{split}$$

Using the first identity **B.1 = B** so the expression becomes

 $\mathbf{Q} = \mathbf{A} \cdot (\mathbf{B} + \overline{\mathbf{B}})$

Using our sixth identity again the term $B + \overline{B} = 1$ so the expression now becomes:

 $\mathbf{Q} = \mathbf{A} \cdot \mathbf{1}$

Using the first identity A.1 = A so the expression finally becomes

 $\mathbf{Q} = \mathbf{A}$

$$\mathbf{Q} = \mathbf{B}.\mathbf{C}.(\mathbf{\overline{C}} + \mathbf{D}) + \mathbf{C}.\mathbf{D} + \mathbf{C} + \mathbf{\overline{A}}$$

Solution:

 $Q = B.C.(\overline{C} + D) + C.D + C + \overline{A}$ $Q = B.C.\overline{C} + B.C.D + C.D + C + \overline{A}$ $Q = B.0 + B.C.D + C.(D + 1) + \overline{A}$ $Q = B.C.D + C + \overline{A}$ $Q = C.(B.D + 1) + \overline{A}$ $Q = C.(B.D + 1) + \overline{A}$ $Q = C.1 + \overline{A}$

Formative assessment 2

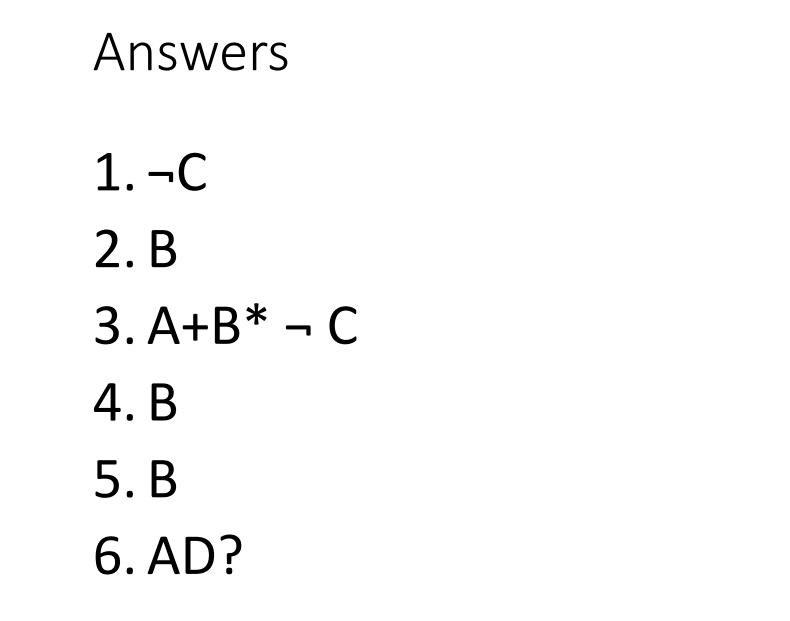
Prove the law using the logic laws

Simplify the following expressions using logic laws

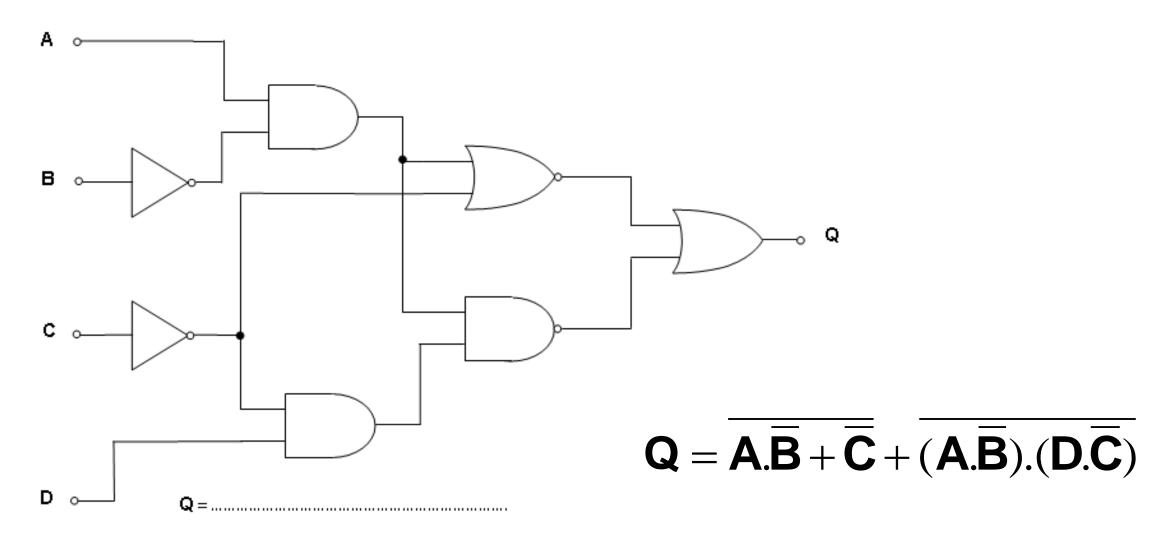
• 1 $\mathbf{Q} = \mathbf{A}.\mathbf{B}.\overline{\mathbf{C}} + \mathbf{A}.\overline{\mathbf{C}} + \overline{\mathbf{A}}.\overline{\mathbf{C}}.\mathbf{D} + \overline{\mathbf{A}}.\overline{\mathbf{C}}.\overline{\mathbf{D}}$

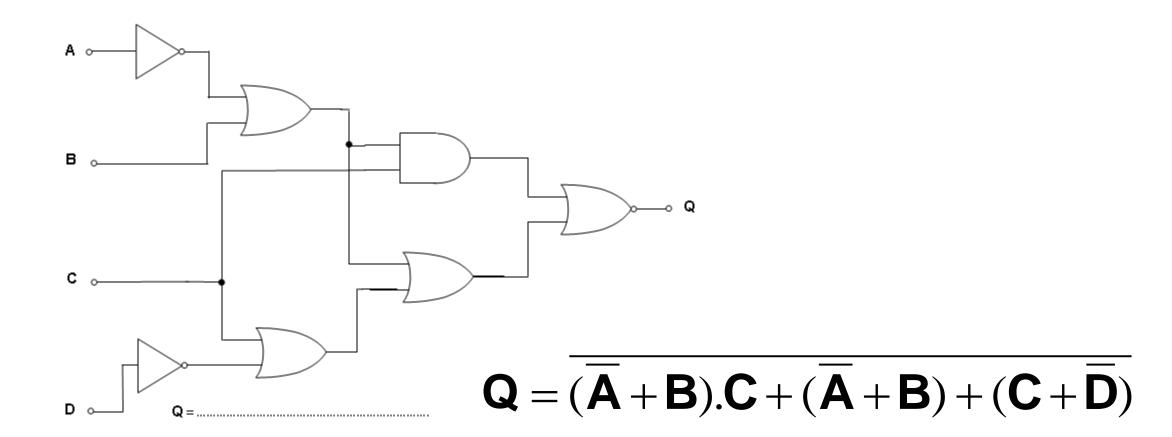
Formative assessment 2

- 2 $\mathbf{Q} = \mathbf{A}.\mathbf{B}.(\mathbf{\overline{B}} + \mathbf{C}) + \mathbf{B}.\mathbf{C} + \mathbf{B}$
- 3 $\mathbf{Q} = \mathbf{B}.(\mathbf{A} + \overline{\mathbf{C}}) + \mathbf{A} + \mathbf{A}.(\overline{\mathbf{A}} + \mathbf{B})$
- $\bullet 4 \quad \textbf{Q} = \textbf{A}.\textbf{B}.\overline{\textbf{C}} + \textbf{B}.\textbf{C} + \overline{\textbf{A}}.\textbf{B}.\overline{\textbf{C}} + \textbf{A}.\textbf{B}.\overline{\textbf{B}}$
- 5 $\mathbf{Q} = \mathbf{A}.\mathbf{B}.\mathbf{C} + \mathbf{B}.\mathbf{C}.\mathbf{D} + \mathbf{B}.\mathbf{C}.\mathbf{D} + \mathbf{B}.\mathbf{C}.\mathbf{D} + \mathbf{A}.\mathbf{B}.\mathbf{C} + \mathbf{A}.\mathbf{B}.\mathbf{C}$
- 6 $Q = A.B.C.D + A.B.D + A.\overline{B}.D + A.\overline{B}.C.D + A.C.D + \overline{A}.C.D$



Derive the Boolean Expression for the output of the following logic systems.



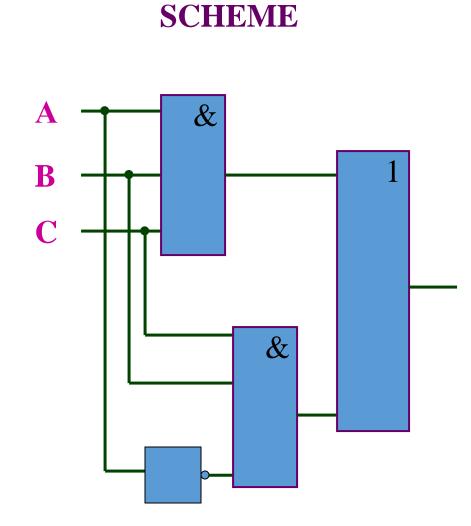


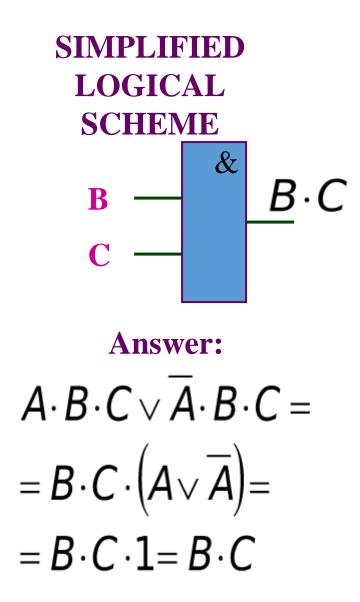
Simplify the formula and build logic scheme Formative assessment 3

•1 $A \cdot B \cdot C \vee \overline{A} \cdot B \cdot C$ • **?** $(\overline{A} \lor \overline{B} \lor \overline{C}) \cdot (\overline{A} \lor B \cdot C)$ • 3 $A \cdot \overline{C} \vee C \cdot (B \vee \overline{C}) \vee (A \vee \overline{B}) \cdot C$

Simplify the formula

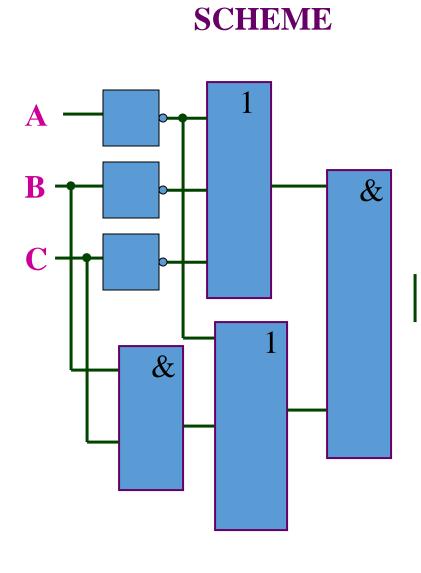
$A \cdot B \cdot C \vee A \cdot B \cdot C$

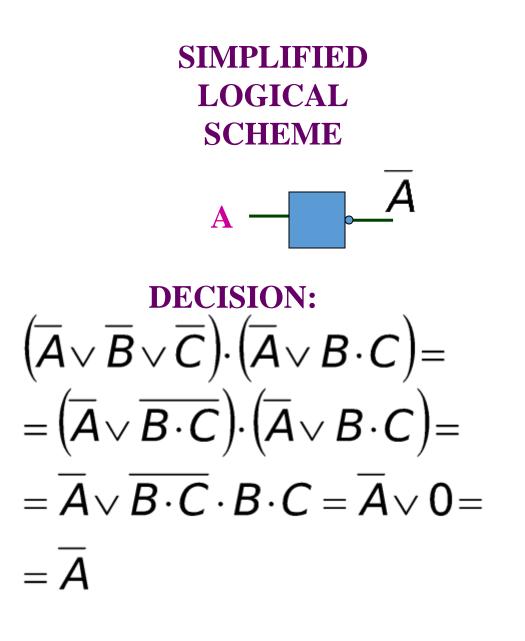




Simplify the formula

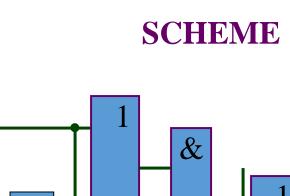
$(\overline{A} \lor \overline{B} \lor \overline{C}) \cdot (\overline{A} \lor B \cdot C)$





Simplify the formula

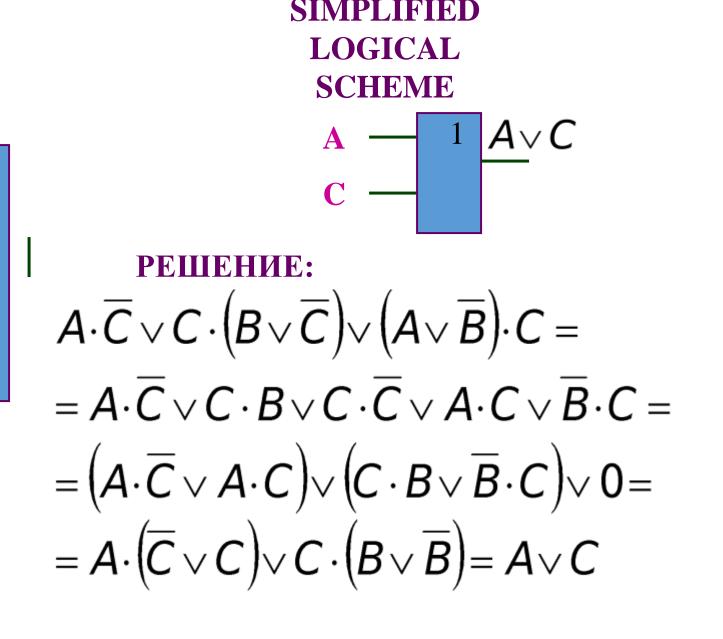
$A \cdot \overline{C} \vee C \cdot \left(B \vee \overline{C} \right) \vee \left(A \vee \overline{B} \right) \cdot C$



&

&

В



Formative assessment 4

RESOURCES

Read:https://www.kullabs.com/classes/subjects/units/lessons/notes/note-detail/3479

Read 2: <u>https://www.allaboutcircuits.com/technical-articles/boolean-identities/</u>