First generation

The first generation program language is pure
machine code, that is just ones and zeros, e.g.
0010010010101111101010110.

What are the advantages and
disadvantages?

First generation

+ Code can be fast and efficient

+ Code can make use of specific processor
features such as special registers

- Code cannot be ported to other systems and
has to be rewritten

- Code is difficult to edit and update

Second generation programming

Second-generation programming languages are
a way of describing Assembly code which you

may have already met.

Assembly Code Object Code

S o 000100110100

ADD #5 001000000101
-= Assembler -=

S5TA A 001100110100

e =3 010000000011

What are the advantages and disadvantages?

Second generation programming

+ Code can be fast and efficient

+ Code can make use of specific processor features
such as special registers

+ As it is closer to plain English, it is easier to read
and write when compared to machine code

- Code cannot be ported to other systems and has
to be rewritten

Third generation (High Level
Languages)

Third generation (High Level Languages) codes
are imperative. Imperative means that code is
executed line by line, in sequence. For example:

1 dim x as integer

2 X =3
3 dim y as integer
4 y =5

SXx=xX+Y¥
6 console.writeline(x)

What are the advantages and disadvantages?

Third generation (High Level
Languages)

+ Hardware independence, can be easily ported to
other systems and processors

+ Time saving programmer friendly, one line of 3rd
gen is the equivalent of many lines of 1st and 2nd
gen

- Code produced might not make the best use of
processor specific features unlike 1st and 2nd gen

Fourth generation

What are the advantages and disadvantages?

Fourth generation

Fourth-generation languages are designed to
reduce programming effort and the time it
takes to develop software, resulting in a
reduction in the cost of software development.

Declarative languages - describe what
computation should be performed and not how
to perform it. Not imperative!

Little Man Computer

D Learning objective:

Analyze a simple program written in
the language of assembler

Assessment Criteria

e Know the use of LMC commands

* Understand the use of assembly language

e Distinguish the difference between assembly
language and others

* Able to use LMC commands to solve problems

Livile Maa

Compuize

Aszsembly Language Code
' | d B I 8 &-‘
. -
| 12 13 14 5 |6 I IR 19
(000 ccc I 000 § 000§ 5507 000§ oo) cC B 000 § 000
27, 28: 29
Little Man Computer ---

3 3G 37 15 39

. . 0 31 3% 34
- LMC - is a simulator e (0 [(0 0 D D S O
PROGIAN
to understand the

uO LN e ' 30 41 42 43 44 45 A6 47 48 31D
working of the Von moreecrion i o

0§ 220 000§ O
ADCRESS
Neumann DA

51 52 g | E; ‘-) 56 57 50 59
60 61 52 a3 4 65 66 Y 63 59
Architecture 0

G D G D
}l :1 f 13 34 15 0 716 T 18 i‘“

(000 ccc f 000§ 000§ 520 000 J 0o ccc 000 § 000

' L uhH ue Uy Uy e

10 \
[oco ccc 000§ 000§ 550§ ooof ccof ccc ooa o)
0 ‘A > R | L F LM UhH L' N uH 9y
‘ (000 § 000

ACCUMULATOR

cgram. LOAD a fife or alter memory

ASSEMBLE INTORAM| RUN| 3TEP!
RESET LOAD| HELP| SELECT v

These are main components in the window that are easily recognizable: http' / /p eterhi gginson.co uk /LM C /

1. The window for typing in the code

2. The two buttons - to load the code into memory and then run

3. The window for an input, if any - not necessary

4. An indicator that shows the progress of the code - step by step

5. Memory locations where instructions and data are stored, as specified in von Neumann architecture - 100 cells, from 00 to 99.
6. The window for the output/s during the execution of the code

7. Options for controlling the flow of the execution - slow to fast, etc

http://peterhigginson.co.uk/LMC/

The Little Man Computer (LMC)

Assembly Language Code

start LDA zerq|
STA sum
STA index
INP

BRZ end

Assembly
language
program

endl.oop LDA sum
ouT

BRAml‘l

end HLT

sum DAT

index DAT

count DAT 1

vaiue DAT

zero DAT

Data |

0LDA23
18TA19
25TA20
3INP

12 5UB 22

13 BRZ 15
14 BRA 6
15 LDA 19
16 OUT
17 BRA O
18 HLT

19 DAT 0
20 DAT 0
21 DAT 1
22 DAT 0
23DATO

PROGRAM
COUNTER

5 INSTRUCTION
REGISTER

ADDRESS

REGISTER

ACCUMULATOR

Program
counter

60
uu 0
mumumnuuum

Linile Maa Compuier

B N Nl T S SR A Py T | A
@mmmmmm

10 114 12 15

‘ 17
lmm--m--m-

¥ 208 21 22; 23 28

p---umnmmm :i
Iﬂﬂﬂﬂﬁ.ﬂu
41 43 44 .
,.mummm 0 :i
53 54 56

62 64. 67

83 87 88 89

o o o [

00; 91, 92, 9%

(MCNININCRL . CACNEmEN

The current instruction explained

' ASSEMBLE CODE INTO RAM 1 RUN ’ ’ STEP

'P ' 5=LOAD into accumulator the contents of RAM address 23

| RESET | [Loap H SAVE

Mnemonic Numeric

(assembly (machine o
language) code) Description
INP 901] INPUT

STAFIRST [308] STORE VALUE(FIRST) IN POSITION 8
INP 901] INPUT

STASECOND [B0SJSTORE VALUE(SECOND) IN POSITION 9
| DAEIRST [508| LOAD VALUE FROM POSITION 8

ADD SECOND 109| ADD VALUE FROM POSITION 9
ouT 902| OUTPUT ANSWER OF SUBTRACTION
HLT | 0 | HALT (STOP)

FIRST DAT | 0 | POSITION OF FIRST ITEM OF DATA
SECOND DAT | o [POSITION OF SECOND ITEM OF DATA

Numeric Code Mnemonic Code | Instruction

1xx ADD ADD

2Xx sSuUB SUBTRACT

3xx STA STORE

4xx LDA LOAD

Sxx BRA BRANCH
(unconditional)

Exx BRZ BRANCH IF ZERO
(conditional)

7XX BRP BRANCH IF POSITIVE
(conditional)

901 INP INPUT

902 ouT OUTPUT

000 HLT/COB HALT/COFFEE BREAK

DAT DATA

Example 308 means STORE to box 08
and ADD 9 means add the contents of box 9

http://peterhigginson.co.uk/LMC/

@ Little Man Computer - CPU simulats

Assembly Language Code

The Ln1'1'|e Man Computer (LMC) .

CPU

o PROGRAM

COUNTER

INSTRUCTION

REGISTER
ADDRESS
REGISTER

ACCUMULATOR

| LoAD || savE |

| | RESET |

| ASSEMBLE CODE INTO RAM | | RUN || STEP | |

Little Maa [}omputen

1 2 3 4 5 6 7 8 9
Eﬂﬂﬁ.ﬂﬂﬂﬂﬂﬂ
10 111 119 14) 4% 16 117 118 119

24 .25, 26, 27, 28, 29

22
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ _

38 39

30 32 35 36
mummnmuumn

49

45 47
mnmumumnmu

50, " 5%, " 52 34', 955 ,'A8,"'57,"'58,"'5%

60 61 62 63 65 66 67 68 69 'I‘
70 72 13 74 15 ' 76 79 ‘

80 82 86 8% ‘

90, 91 92 93 94 95 96, 97 98 99 l‘

= (o Jo Jo fo Jo Jo fo Jo Jo Jo [
J.,
|
B R

e

& Little Man Computer - CPU simulator v3.3
o ——

Assembly Language Code

|RESET| \ LOAD H SAVE |

INP 0 INP
STA FIRST 18TA8
INP 2INP
STA SECOND 3STAQ
LDA FIRST 4LDAS
SUB SECOND 5 SUB 9
ouT 6 OUT
HLT 7HLT
FIRST DAT 8 DAT 0
SECOND DAT 9 DAT 0 CPU
o PROGRAM
COUNTER
INSTRUCTION
REGISTER
ADDRESS
REGISTER
ACCUMULATOR
0
ASSEMBLE CODE INTORAM || RUN || STEP

30 31 | 32

i
o
= s
[S——1
=
N

<
M
o

-]
wn
(-

<
N

N
<o

61 62

<>
-~
o

L=
~J
b

o
“J
N

> .
= .
= 7

=
o .
o ,
o Y
P .
il ~
=) 3
o

T

o}
o
@
jurt

82

-
(=4
(=]

0o
o
o
et

-
=
(=]

l

Lo
o
[]
L]
o ,
[]
L] g
©
) .
-] .

3 4 b 6 1 8
309 | 508 | 209 | 902 | 0 0
X3 14 4% 116 117 118
0 0 0 0 0 0
23 124 125, 36, 27 28
0 0 0 0 0 0
331 34 3% 136 137 138
43 44 45 46 47 48
0 0 0 0 0 0
53 ";54"',%5,'36,"'57,'58
0 0 0 0 0 0
63 64 65 66 &7 68
0 0 0 0 0 0
13 174 1365 36! 77 8
83 84 85 86 87 88
0 0 0 0 0 0
93 94 95,96, 97, 98
0 0 0 0 0 0

9=INPUT/QUTPUT: 01=INPUT a value into the accumulator

39

=
O

o
o

= 0
v~

= o
O

In pairs or mdivé'dua!w, P?eaga enter the

following program

L

C

INP

STA FIRST
INP

STA SECOND
LDA FIRST
ADD SECONL
OouT

HLT

into the Little Man Computer Compiler and step through it,
observing what happens.
=t
[& Little Man Computer - CPU simulator 3.3 M
T — — - -
Assembly Language Code RAM Lintle Maa Compuies
NP 0 INP | R R L . T T
e WP m-mmmmuun |
STA SECOND 3§TAQ 10 12 | 13 15 16 17 118 119
508 SECOND 5508 ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
out 6 OUT 0, 21 22 24’25 '26.'21. ' 28
FIRST DAT 8 DAT ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ |
SECOND DAT 9 DAT 0 cPU 3031 32« 33 35 ' 36 .37 .38 .39
5 NN N O 0 O O N N O
COUNTER 40 41 42 43 44 145 47
e ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
REGISTER 50, 5%, " 52, ' 53 55 56 57 '58 5%
ADDRESH ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ A
REGISTER 60 61 62 63 64 65 66 67 68
ACCUMULATOR ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
700 71 72 93 74 175176 17 18 19 ‘
umuuummuuu
80 81 82 B3 B4 85 86 'B7
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
50, 91 92 53 94 95 96 97 98 99 {
o Jo Jo Jo Jo Jo Jo Jo fo fo 'l

[ASSEMBLE CODE INTO RAMJ RUN] srep: |

"
IP ' 9=INPUTIOUTPUT: 01=INPUT a value into the accumulator
i)

|RESET| [LoAD H SAVE

FIRST DAT
SECOND DAT

Little Man Computer

6

5

4

3

2

1

0

901

E1E E EiE E E

O &NM < NN O™~ M

Mnemonic Numeric

(assembly language) (machine code) .
INP 901] INBOX --> ACCUMULATOR
STAFIRST [308] ACCUMULATOR --> MEMORY[08]
INP 901 INBOX --> ACCUMULATOR

STASECOND [209]ACCUMULATOR --> MEMORY[09]
LDA FIRST 508|MEMORY[08] --> ACCUMULATOR

SUB SECOND [209]ACCUMULATOR = ACCUMULATOR -

MEMORY[09]
OUT 902] ACCUMULATOR --> OUTBOX
LT 000| HALT/COFFEE BREAK

FIRST DAT 000] FIRST ITEM OF DATA
SECOND DAT [000] SECOND ITEM OF DATA

In pairs, enter the following program into the Little Man
Computer Compiler and step through it, writing a
description of what happens.

INP
STA FIRST
INP
machine instruction STA SECOND
R LDA FIRST
S o ADD SECOND
HLT
FIRST DAT

SECOND DAT

For the following memory space, what would it look like after
executing the assembly code below:

' Address Contents
211 6

212 3

213 78

214 21
LOAD #1690
STORE 213
LOAD 214
ADD 213

STORE 214

When you load the LMC there is already a program in the computer. The
program is written out in the table below in machine code. By executing the
program and using the list of instructions, work out what the program does.

Adress | Instruction | Whatitdoes

901

399

901

199

902

000

Translate the instructions, mnemonic and
numeric codes on the worksheets

Transiate these instructions into thelr mnemonic and numeric codes

Instruction

Mnemonic code

INPUT

STORE

LOAD

QUTPUT

HALT

DATA

Transiate these numeric codes Into their mnemonic and Instructions

Numenc code

Mnemonic code

i

iz

a4

901

902

i

Transiate these mnemonic codes nto their nstruclions and numenc codes

Mnemonic code

Numeric code

Instruction

HLT

ouT

INP

LDA

—lana

Write programs

A)A-B,
B)A+B-C,
C)A+(B-C)
D) (A-C)+(B-D)

Do it yourself

https://learningapps.org/watch?v=prtz8teoa20

https://www.bzfar.org/publ/algorithms progra
mming/programming languages/programming
in little man computer Imc/42-1-0-47

https://learningapps.org/watch?v=prtz8teoa20
https://www.bzfar.org/publ/algorithms_programming/programming_languages/programming_in_little_man_computer_lmc/42-1-0-47

