CATEGORIES AND CLASSIFICATION
OF PROGRAMMING LANGUAGES

11.1B Programming paradigms

LEARNING OBJECTIVES:

- distinguish between generations of programming languages

- classify programming languages into low and high-level

- Analyze the advantages and disadvantages of high-level languages
- Analyze the advantages and disadvantages of low-level languages

SUCCESS CRITERIA:

Knowledge
* Name generation of programming language;
e Give differences between HLL&LLL;

Comprehension

e Explain using LLL;

e State differences between machine code & assembler;
Analysis

e Define the level of the code programming languages.

Glossary

High level language S3BIK BEICOKOT'O YPOBHS
Low level language SI3pIK HU3KOTO YPOBHS
Machine code MaluHHEBINA KO
Assembler Accembiep

Generation [Tokonenue

Execute BreI10JIHATH

Binary JIBOWYHBIN KO

DISCUSSION

* What are programming languages?

* Which PL you have experience in?

* What are the differences between Object-oriented and
structured PL?

SEARCH INFORMATION AND MAKE A
online presentation

1 group 2 group

1. How many generations of PL 1. Which PL are considered to be
exist? the 3" generation, the 4th

2. What programming languages generation.

are considered to be of high level? | 2. Who is the first programmer?
3. When (year) did PL start first to | 3. When (year) were the 3,4,5

be developed? generation
4. \When (year) were the 1,2 programming languages created?
generation 4. Find examples for 3-5

programming languages created? | generation of PL
5. Find examples for 1-2
generation of PL

Links to online presentations

Yerzhanova https://docs.google.com/presentation/d/1UZ0u5StFrBs3pkmPgFv52
Aizhan PUvVUFghNugR5jvr-qOHY rWk/edit#slide=id.q6158184925 0_46

https://docs.qgooqgle.com/presentation/d/1zROIL7CZ08c9HvIIIZ
ufKameF-VbRnNCeXAx7XdFpOls/edit#slide=id.p

https://docs.qgooqgle.com/presentation/d/INrBfCwApGVU9ImMy
kFnxe AK4mZclkNXMObOhbUGQ5950q/edit#slide=id.p

https://docs.google.com/presentation/d/1NrBfCwApGVU9mykFnxeAK4mZclkNXMQbOhbUGQ595Og/edit#slide=id.p
https://docs.google.com/presentation/d/1UZ0u5tFrBs3pkmPgFv52PUvuFghNuqR5jvr-qOHYrWk/edit#slide=id.g6158184925_0_46
https://docs.google.com/presentation/d/1zROIL7CZo8c9HvfJiZufKgmeF-VbRnCeXAx7XdFp0Is/edit#slide=id.p

Presentation time 4 minutes

Generations of PL

Period (Year)

Names of programming

languages

1*" generation

Low/High level
language

2" generation

3" generation

4" generation

5" peneration

Activity 1
Fill in the table

Potentially fast programs / Programming language C / Difficult to read by human/ Similar
to English / Less difficult to learn / Have a friendly interface / More difficult to modify and
maintain / More difficult to learn / Assembler / Must be translated / Easier for computer to
read / Converting requires extratime / Easier to read for man /

Easily understood by hardware / Pascal / Machine code

High Level PL Low level PL

Fill in the table (answer)

High Level PL

Low level PL

Programming language C
Similar to English

Less difficult to learn

Have a friendly interface

Must be translated

Converting requires extra time
Easier to read for man

Pascal

Potentially fast programs
Difficult to read by man
More difficult to modify and
maintain

More difficult to learn
Assembler

Easier for computer to read
Easily understood by
hardware

Machine code

Activity 2
Using all the words in this word-wall, create a diagram to show how all the concepts

assembler
Source-code

Intermediate-code
machine-code &
object-code "z;

bly
ler

3SSem
compl

=
Assessment criteria
Understand the role of each of the following:
e assembler e compiler ¢ interpreter.
Explain the differences between compilation and

interpretation. Describe situations in which each
would be appropriate.

99?

M7

7?

7?

?e?

e

?P?

7

7

Answer

Low level language

—

. B

ASM
A bi Translator:
ssembly Assembler
. Machine Code
High level language (Binary)
~(®)
_— — Translator:
_— Interpreter
Source —t > | —al >
Code — —
4
Translator: Object Intermediat Interpreter
Compiler Code e

Code

C++
RV Y PC
| 1
Java [
Intermediate = fem=————- 1
Code VM ! Macs
1
Python L _____!
________ 1
AL VM ! | Suns
1
C# L ___.
— N
S pe— 1
VM I_| Commodore
1
Delphi L ____!
Byte N T mmmmee |
Code VM 1 IBMs
1
Perl L)
TTTTTTTA
UM Nintendo
VB

A solution was developed to have the translators generate to a kind of “half-way” standard intermediary code which could
then be translated to each computers own specific machine code.

This half way language is called “intermediate code”, often known as “bytecode”. It is kind of useless on its own as it
won’t run without any further translation to turn it into machine code.

It does however run on a sort of ‘pretend’ machine that it was designed for, although this machine does not physically exist,
it is installed on each make of computer, and it performs the job of taking the “generic” intermediate code and translating it
into machine code specific for that machine.

This pretend machine is known as a “virtual machine”.

Writing an interpreter to translate bytecode is a much easier task than writing an interpreter to translate high-level source
code.

Bytecode is very portable and very compact.

Interpreting bytecode programs are faster than high-level source code programs.

1010010110111010 k ul'le_pﬂg:e ',15“
m—‘o 1001110110000111 m—o (sale_price > 2) {
discount = 0.1

0001110010110001

o] 1011010110111010 L (
0000111001010111 discount = 0.05
1001110010011101

}

g

Processing time

Dot

Processing time

Slow

Slow

b =

®m 0

High level language

E for
p?jgyraommer % The computer’s
understand GNIL LangUege

Translator
program

Contains Binary
English numbers

words All 1s and 0s

Classification of programming languages (PL)

1St generation
Low level
languages

2nd

. generation
Programming

languages arc

generation

High level
languages 4t
generation

5th
generation

Generations of Programming Languages

Generation Language / Type
1 Machine language (Machine code)
Assembly language (Assembler)
3 Imperative languages (Basic, C, Python, Pascal,
Java, Ruby, Fortran COBOL)
4 Logic languages (SQL,, HTML, CSS)

5 Prolog, Lisp, Mercury

Activity 3

Fill in the chart

« Programming Languages
« Low level

« High level

* Imperative

« Declarative
 Procedural

« Assembler

« Machine code
 Object oriented
 Functional

e Logyc

« programming languages
« LOW Level
« Assembler , machine code

« HIGH level
 declarative
* Functional
* (LISP, Haskell)

 Logyc
* (Prolog, Mercury)

« imperative
* Procedural
* (ADA, C, Paskal)

» Object oriented (PHP, C++, JAvaScript, Pyhton)

Activity 4

1. Place the following statements into the correct locations to show your understanding of the advantages of low-level
languages and high-level languages.

Advantages / Disadvantages of high-level Advantages/Advantages / Disadvantages of

low-level languages

languages

ystems, real time systems, | manijpulate individual bits i€ architecture
> == and bvtes directlv dependent
Harder to modify and T

> cam -t easi {0 learn More difficult to
nteract wi
; Hardware Has to be
User friendly translated I
Assessment criteria

Know that high-level languages include imperative high-level language

Understand the advantages and disadvantages of machine-code and assembly language programming compared with high-leve
language programming

Explain the term ‘imperative high-level language’ and its relationship to low-level languages

(Easier to talk to | ‘Executes extremely f OccupEies the Ieast_laml ‘ Translation takes time]
hardware for embedded Allows the programme
Ofte S
built-in library function

Answer

1. Place the following statements into the correct locations to show your understanding of the advantages of low-level
languages and high-level languages.

Advantages / Disadvantages of high -level Advantages / Disadvantages of low -level
languages languages

[Relatively easy to learn] Executes extremely fast and
efficiently
[Easier to understand, maintain,] Occupies the least amount of
improve, debug space possible

built-in library functions manipulate individual bits and

bytes directly
{ Ideal for embedded systems, J

[Often have access to many] [Allows the programmer to J

Machine architecture
independent

real time systems, device
drivers etc.

Easier and quicker to
program

Directly Interact with the
Hardware

[User friendly]

[Easier to talk to hardware]

[Has to be translated] [More difficult to learn]

[Harder to modify and]

[Translation takes time] maintain

d R U a N

.,...
-.au‘uw-;n-.':w

TR

N)

Compare different programming languages

predicates run: aniualAmy
parent {(String, String) K r
enter a side
male (Strang) 0 3 1 2
female (String) 5
brother (String, String) enter b side
clauses 4
parenct (“Ton", “Jake™) . y
parent ("Janna®, "Jake®) . enter a side
parent ("Tom", "Tim") . B
. . "
parent (“Janna®, "Tim") . 2%a%b=40
male ("Tom") .
male ("Tim"). 2*bre=64
male ("Jake"). 2'a" ot bt
¢ e; "3 ..:1 - A°a it It procedure sskeSound() ix gracedre Narown(|
b o area=184 ("] ("Squred”|
N RARTDIENE / LgEs - e odraedas) edprocaiee
brother (X, Y) :-parent (2,X), CBOPKA YCTIENHO SABEPHEHA (ofmee spema: 13 cexysmi)

package humen;

2 inp
[4] imporc java.util,Scanner;
=ta SH
_ public <lass Buman | out
5] public static void matn(3tring(] args)| .
Scanner ac = new Scanner(System,:in); inp
perxson personl = now pexaon(); =tz 97
raonl,.name = ac.nexcline();
- . v out
personl.g er = sc.nextline();
c.nexctByce ()} i‘n.P
= sc.nextBooleani): =tz OE
System, out.println("\nF=rs et 2 add 57
"nam=: " + personl.nams + ot
: " + peraonl.g z 4
+ peraonl.age + =suk 36
e “$ personl.=tudent); out

hlt

Concise definitions!

Write a definition for the following three terms.
 Each definition must be 15 words or less.
 Each definition must make at least 3 valid points.

Interpreter Definition here...

Compiler Definition here...

Assembler Definition here...

Interpreter Takes one line of code, translates it, then runs it right away.
Compiler Takes source code, translates it all into object code before allowing it to run.
Assembler Translates a program written in assembly language into machine code.

Reflection

(»] What knows?
(»] What remained unclear
(») What is necessary to work on

