
CATEGORIES AND CLASSIFICATION

OF PROGRAMMING LANGUAGES

11.1B Programming paradigms

LEARNING OBJECTIVES:

• distinguish between generations of programming languages

• classify programming languages into low and high-level

• Analyze the advantages and disadvantages of high-level languages

• Analyze the advantages and disadvantages of low-level languages

SUCCESS CRITERIA:

Knowledge

• Name generation of programming language;

• Give differences between HLL&LLL;

Comprehension

• Explain using LLL;

• State differences between machine code & assembler;

Analysis

• Define the level of the code programming languages.

Glossary

ENGLISH РУССКИЙ

High level language Язык высокого уровня

Low level language Язык низкого уровня

Machine code Машинный код

Assembler Ассемблер

Generation Поколение

Execute Выполнять

Binary Двоичный код

DISCUSSION

• What are programming languages?

• Which PL you have experience in?

• What are the differences between Object-oriented and

structured PL?

SEARCH INFORMATION AND MAKE A

online presentation

1 group 2 group

1. How many generations of PL

exist?

2. What programming languages

are considered to be of high level?

3. When (year) did PL start first to

be developed?

4. When (year) were the 1,2

generation

programming languages created?

5. Find examples for 1-2

generation of PL

1. Which PL are considered to be

the 3rd generation, the 4th

generation.

2. Who is the first programmer?

3. When (year) were the 3,4,5

generation

programming languages created?

4. Find examples for 3-5

generation of PL

Links to online presentations

https://docs.google.com/presentation/d/1NrBfCwApGVU9my

kFnxeAK4mZclkNXMQbOhbUGQ595Og/edit#slide=id.p

https://docs.google.com/presentation/d/1UZ0u5tFrBs3pkmPgFv52

PUvuFghNuqR5jvr-qOHYrWk/edit#slide=id.g6158184925_0_46

https://docs.google.com/presentation/d/1zROIL7CZo8c9HvfJiZ

ufKgmeF-VbRnCeXAx7XdFp0Is/edit#slide=id.p

Yerzhanova

Aizhan

https://docs.google.com/presentation/d/1NrBfCwApGVU9mykFnxeAK4mZclkNXMQbOhbUGQ595Og/edit#slide=id.p
https://docs.google.com/presentation/d/1UZ0u5tFrBs3pkmPgFv52PUvuFghNuqR5jvr-qOHYrWk/edit#slide=id.g6158184925_0_46
https://docs.google.com/presentation/d/1zROIL7CZo8c9HvfJiZufKgmeF-VbRnCeXAx7XdFp0Is/edit#slide=id.p

Presentation time 4 minutes

Activity 1

Fill in the table

High Level PL Low level PL

Potentially fast programs / Programming language C / Difficult to read by human/ Similar

to English / Less difficult to learn / Have a friendly interface / More difficult to modify and

maintain / More difficult to learn / Assembler / Must be translated / Easier for computer to

read / Converting requires extra time / Easier to read for man /

Easily understood by hardware / Pascal / Machine code

Fill in the table (answer)

High Level PL Low level PL

Programming language C

Similar to English

Less difficult to learn

Have a friendly interface

Must be translated

Converting requires extra time

Easier to read for man

Pascal

Potentially fast programs

Difficult to read by man

More difficult to modify and

maintain

More difficult to learn

Assembler

Easier for computer to read

Easily understood by

hardware

Machine code

Activity 2

Using all the words in this word-wall, create a diagram to show how all the concepts

are linked together.

Assessment criteria
Understand the role of each of the following:
• assembler • compiler • interpreter.
Explain the differences between compilation and
interpretation. Describe situations in which each
would be appropriate.

Low level language

Assembly

Machine Code
(Binary)

Translator:
Assembler

High level language

Source
Code

Translator:
Interpreter

Translator:
Compiler

Object
Code

Intermediat
e

Code

Interpreter

Answer

PC

Macs

Suns

Commodore

IBMs

Nintendo

VM

VM

VM

VM

VM

VM

C++

Java

Python

C#

Delphi

Perl

VB

Intermediate

Code

Byte

Code

A solution was developed to have the translators generate to a kind of “half-way” standard intermediary code which could

then be translated to each computers own specific machine code.

This half way language is called “intermediate code”, often known as “bytecode”. It is kind of useless on its own as it

won’t run without any further translation to turn it into machine code.

It does however run on a sort of ‘pretend’ machine that it was designed for, although this machine does not physically exist,

it is installed on each make of computer, and it performs the job of taking the “generic” intermediate code and translating it

into machine code specific for that machine.

This pretend machine is known as a “virtual machine”.

Writing an interpreter to translate bytecode is a much easier task than writing an interpreter to translate high-level source

code.

Bytecode is very portable and very compact.

Interpreting bytecode programs are faster than high-level source code programs.

Programming
languages

Low level
languages

1st generation

2nd

generation

High level
languages

3rd

generation

4th

generation

Classification of programming languages (PL)

5th

generation

Generations of Programming Languages

Generation Language / Type

1 Machine language (Machine code)

2 Assembly language (Assembler)

3 Imperative languages (Basic, C, Python, Pascal,

Java, Ruby, Fortran COBOL)

4 Logic languages (SQL,, HTML, CSS)

5 Prolog, Lisp, Mercury

Activity 3

• Programming Languages

• Low level

• High level

• Imperative

• Declarative

• Procedural

• Assembler

• Machine code

• Object oriented

• Functional

• Logyc

Fill in the chart

• programming languages
• LOW Level

• Assembler , machine code

• HIGH level
• declarative
• Functional
• (LISP, Haskell)

• Logyc
• (Prolog, Mercury)

• imperative
• Procedural
• (ADA, C, Paskal)

• Object oriented (PHP, C++, JAvaScript, Pyhton)

Activity 4

1. Place the following statements into the correct locations to show your understanding of the advantages of low-level

languages and high-level languages.

Assessment criteria

Know that high-level languages include imperative high-level language

Understand the advantages and disadvantages of machine-code and assembly language programming compared with high-level

language programming

Explain the term ‘imperative high-level language’ and its relationship to low-level languages

Advantages / Disadvantages of high-level

languages

Advantages/Advantages / Disadvantages of

low-level languages

+ +

_ _

Relatively easy to learnEasier and quicker to program

Easier to understand,

maintain, improve, debug

Machine architecture

independent

Often have access to many

built-in library functions

Executes extremely fast

and efficiently

Occupies the least amount

of space possible
Allows the programmer to

manipulate individual bits

and bytes directly

Ideal for embedded

systems, real time systems,

device drivers etc.

Directly Interact with

the Hardware

Easier to talk to

hardware

More difficult to

learn

Harder to modify and

maintain

Translation takes time

User friendly
Has to be

translated

1. Place the following statements into the correct locations to show your understanding of the advantages of low-level

languages and high-level languages.

Advantages / Disadvantages of high -level

languages

Advantages / Disadvantages of low -level

languages

Relatively easy to learn

Easier and quicker to

program

Easier to understand, maintain,

improve, debug

Machine architecture

independent

Often have access to many

built-in library functions

Executes extremely fast and

efficiently

Occupies the least amount of

space possible

Allows the programmer to

manipulate individual bits and

bytes directly

Ideal for embedded systems,

real time systems, device

drivers etc.

Answer

Easier to talk to hardware

Directly Interact with the

Hardware

Harder to modify and

maintain

More difficult to learnHas to be translated

User friendly

Translation takes time

Сompare different programming languages

Concise definitions!

Write a definition for the following three terms.

• Each definition must be 15 words or less.

• Each definition must make at least 3 valid points.

Interpreter

Compiler

Assembler

Definition here…

Definition here…

Definition here…

Interpreter

Compiler

Assembler

Takes one line of code, translates it, then runs it right away.

Takes source code, translates it all into object code before allowing it to run.

Translates a program written in assembly language into machine code.

Reflection

▶What knows?

▶What remained unclear

▶What is necessary to work on

