Translators

Lesson objectives

e Advantages and disadvantages of compilers
e Advantages and disadvantages of interpreters

Assessment criteria

e Describes differences between compilers and interpreters
e Lists the advantages and disadvantages of each translator

Vocabullary

Assembler
Compiler
Interpreter
Object code
Source code
Intermediate code

https://www.youtube.com/watch?v=_C5AHaS1mOA

1) Watch the video
2) Make questions for each other

https://www.youtube.com/watch?v=_C5AHaS1mOA

Translators

*Assembler
Compiler
°Interpreter

Concise definitions!

Give a definition for the following three terms.
 Each definition must be 15 words or less.
 Each definition must make at least 3 valid points.

Interpreter Definition here...

Compiler Definition here...

Assembler Definition here...

Takes one line of code, translates it, then runs it right

Interpreter
away.
. Takes source code, translates it all into object code
Compiler .
before allowing it to run.
Assembler Translates a program written in assembly language into

machine code.

1010010110111010 Wal_puice =108
m—‘o 1001110110000111 M—o I {snie_prios > &) {
: 0001110010110001) eGoumE =3
é 1011010110111010 -
0000111001010111 diccint = 608
1001110010011101 Q)

Processing time

Processing time

Slow

Slow

b —

- & i llg

High level language

;E)?jgrfaonr\mer to The computer’s
understand own language

Translator
program

Contains Binary
English numbers

words All 1s and 0s

Using all the words in this word-wall, create a
diagram to show how all the concepts are

c,,%
e
=CD
33
D—-
cD
—
| e 18
D

Intermediate-cote ='ss
machine: GﬂdEE 5=
ohjiect-cole EHBS -
translatur_z_a, = @ 40

?????

Answer

Low level language

— a
ASM
A bl Translator:
Ssembly Assembler
. Machine Code
High level language (Binary)
_— — Translator:
—_— Interpreter
Source — _
Code ———— —
Translator: Object Intermediat Interpreter
Compiler Code e

Code

C++
I======" 1
VM ! PC
)
Java
Intermediate = q-===-=--- '
Code VM ! Macs
vEvEvESeeme.
Python
"""" 1
VM | suns
— L e ——a
CH#
—_— N—
o 1
VM !_____| Commodore
.
Delphi
Byte NGO T ymmmmm= .
Code VM] IBMs
vEvEvEEeNemn
Perl
_____ 1
T VM ! Nintendo
1
VB

A solution was developed to have the translators generate to a kind of “half-way” standard intermediary code which could
then be translated to each computers own specific machine code.

This half way language is called “intermediate code”, often known as “bytecode”. It is kind of useless on its own as it
won’t run without any further translation to turn it into machine code.

It does however run on a sort of ‘pretend’” machine that it was designed for, although this machine does not physically exist,
it is installed on each make of computer, and it performs the job of taking the “generic” intermediate code and translating it
into machine code specific for that machine.

This pretend machine is known as a “virtual machine”.

Writing an interpreter to translate bytecode is a much easier task than writing an interpreter to translate high-level source
code.

Bytecode is very portable and very compact.

Interpreting bytecode programs are faster than high-level source code programs.

machine
codes

Object program

Source program

?

assembly
language
programs

high-level
language
programs

|

Execution

The functions of the three types of translators

Source program Object program

assembly
language ——
program® ! | machine

| codes
m—— _
high-level _

language '
i e S ¢
.. Execution

The functions of the three types of translators

ret

R :

mowv
ncy
]'I'!
LEZO - .
Cezre

Jn

assembler

Assembler

* To convert the assembly language into machine code.

* Translate mnemonic operation codes to their machine language
equivalents.

Low level language

s X @

ASM

Translator:

Assembly Assembler

Machine Code

Compiler

Forx=1to 10

- Next x

COMPILER

Compiler

e Compiler:
o Checks syntax of program
o Checks at a time all the program

* Primary reason for compiling source code is to create an executable
program
 Examples of compiler based language:
e C,C++, JAVA

Executables

e Executables: Files that actually do something by carrying EXE
out a set of instructions. ~ |

e E.g., .exe filesin Windows

e Once the executable is there, it can be called by the user to
process the given inputs to a program and produce the
desired outputs.

Example of Compiler

e Some of examples of Compiler:

o Microsoft Visual Studio
o Bluel
o Quincy 2005

£

Quincy 2005v1.3 05-Feb-2008

OK

MinGW GCC version 4.2.1-sjlj

htip://quincy.codecutter.org

Dr.Dobb’s

Extension of Quincy 2002 - Copyright © 1996-2003 Al Stevens

Windows XP
Quincy is open-source freeware with no licensing restrictions

Interpreter

Interpreter

e A computer program that executes instructions written in a programming
language and do not produces the executable file.

e [nterpreter:
o Checks the keywords of a program

o Taking one instruction at a time and convert it into machine language
before taking upon the next instruction.

Examples of interpreter based language:
o PHP, JavaScript, BASIC

Example of Interpreter

e We use JavaScript language.

e JavaScript engine is specialized computer software which interprets and
executes JavaScript. Mostly used in web browsers.

JavaScript

Compiler VS Interpreter

Qutput - compiler (run) X

g B ¥ ¥

n:

Success: true

jevea.lang.ClasslNotFoundException: HelloWorld

at
at
&t
&t
&t
at
at
&t
&t
at

jeva.net.TRLClassloadersl. run (URLC1assloader . Java: 372)
jeva.net.TRLClassloadersl. run (URLClassloader . Java: dal)
jeve.security.BecessController.doPrivileged (Native Method)
jeve.net.TRLClzssloader. findClass (TRLCLzssloader . java: 3el)
jeva.lang.Classloader. logdClass (Clessloader. jeva:424)
sun.misc.Launcherfippllasslogder. loadClass (Launcher. java: 308)
jeva.leng.Classlogder. loadCless (Classloader. java: 357)
jeve.lang.Class. forMamel (Hative Method)
jeve.lang.Class. forMame (Class. java:iel)

CompilefourcelnMemory. main (CompileSourceInMemory. java: 0]

BOILD SUCCESSFUL (total time: 2 seconds)

[ATRE SR MPRITEPRS 25 F
LR -ghae
2345 Ta%abodeghs sk lpmoparatweeys’
| K man THG CENBGDAN |) §
var at=Sogiandomim, 1.34) .Selec: (kesxalphalk] | .Toksray:
. Pristing
»n.Wheee (oo in gloo) Conoat (a.Whoree (oo dm digl | .Tolkzray,

4

Crposa Oremem ROl My
®1: 1 Hsrnan remotpasmeats B ha w TSt » s HAPADCWErk NET
3] e wemiin |, Conae e |4 >
T upabew Crposes 13 Crombey 3

Summary

e Assembler = To convert the assembly language into machine code.

e Compiler = A program that changes source code (high-level
language) to object code which that can be executed by a machine.

e A computer program that executes instructions written in a
programming language and do not produces the executable file.

Formative assessment 1

Place the each item under the respective title

Interpreted code is run through the
interpreter (IDE), so it may be slow,
e.g. to execute program loops

Error report produced once entire
program is compiled. These errors
may cause your program to crash

Compiled programs no longer
need the compiler

An executable file of machine code
is produced (object code)

An executable file of machine code
is produced (object code)

» T"émporafi‘lxy execdi‘eslhrigh:iévéi
languages, one statement at a time

One high-level language statement
may be several lines of machine
code when compiled

Interpreted programs cannot be
used without the interpreter

One low-level language statement is
usually translated into one machine
code instruction

Error message produced
immediately (and program stops at
that point)

Translates high-level languages into Compiling may be slow, but the
machine code resulting program code will run

quick (directly on the processor)

Assembled programs no longer

Translates low-level assembly code
need the assembler

into machine code

No executable file of machine code
is produced (no object code)

Place the each item under the respective title

Compiler Interpreter Assembler

Answers

Compiler

Translates high-level languages into
machine code

An executable file of machine code
is produced (object code)

Compiled programs no longer
need the compiler

Error report produced once entire
program is compiled. These errors
may cause your program to crash

Compiling may be slow, but the
resulting program code will run
quick (directly on the processor)

One high-level language statement
may be several lines of machine
code when compiled

Interpreter

Temporarily executes high-level
languages, one statement at a time

No executable file of machine code
is produced (no object code)

Interpreted programs cannot be
used without the interpreter

Error message produced
immediately (and program stops at
that point)

Interpreted code is run through the
interpreter (IDE), so it may be slow,
e.g. to execute program loops

Assembler

Translates low-level assembly code
into machine code

An executable file of machine code
is produced (object code)

Assembled programs no longer
need the assembler

One low-level language statement is
usually translated into one machine
code instruction

Fill in the table with the advantages and disadvantages of the two types
of translators (compiler and interpreter)

Assembler Compiler Interpreter

Advantages

Disadvantages

2. Place the following statements into the correct locations to show your understanding of the different between an assembler,
interpreter and a compiler. Some statements can straddle more than one category.

interpreter

Translates low-level code into machine code [Translates high-level code into machine code]
Processor architecture specific [Translates high-level code directly into machine code] Often translates high-level code into intermediate /
\ J byte code
Translates source code on a one-to-one basis J [Translates source code on a one-to-many basis]
[Processor architecture independent]

[Translates one line of code at a time and then executes it] [Translates entire source code and produces object code]

Formative assessment 2

Complete a dry run test using a trace table.

Pair work

Analyze programming languages and separate them into two: compiler
and interpreter-type languages. Discuss with other pairs and compare
your results.

Compiler-type Interpreter-type

Programming
Languages

