
Revision

Unit 11.1B – Programming paradigms

distinguish between generations of

programming languages 01

classify programming languages into

low and high-level 02

analyze the advantages and

disadvantages of high-level languages03

analyze the advantages and

disadvantages of low-level languages04

Lesson

objectives

• Imperative programming is
programming paradigm
program describes a
sequence of steps that
change the state of the
computer

• Declarative programming is a
paradigm that expresses the
desired result, not how to
achieve it.

In the early days of computing, a computer could only be programmed using machine code. This was a difficult and tedious
task even to code up the most simple algorithms. Then the assembly language was developed. It was easier to code using
Assembly than machine code but it was still difficult. Later imperative high level programming languages were developed
that made coding accessible to many more people as programming was now much easier. Machine code, assembler and
imperative high level programming languages are referred to as first, second and third generation programming languages
respectively.

First Generation

Machine code

Second
Generation

Assembler

Third
Generation

Imperative high
level

Fourth

Generation

• Declarative

Any Questions???

Learning Objective:
✓ advantages and disadvantages of compilers
✓ advantages and disadvantages of interpreters

✓ Success criteria:

- analyze the advantages and disadvantages of compilers and interpreters
- compare Language translators like compiler and interpreter

• Are platform specific
• Each assembly language instruction has a

1-to-1 relationship to a machine code
instruction

• Translation is fairly quick and
straightforward

ASSEMBLERS

TYPES OF TRANSLATORS

Compilers

• Scans the entire program and translates the
whole program at once

• Are platform specific
• Take a high level code as a source code
• Check the source code for any errors line by

line
• Check the entire program at ones
• If the source code contains an error, it will not

be translated
• Generates an intermediary object code
• Compiled programs can be run without any

other software present

Interpreters

• Translates just one statement of the program
at a time

• Check for errors as they translate
• Can be partially translate source code

containing errors
• Both the program source code and the

interpreter itself must be present
• This results in poor protection of the source

code
• Does not generate an intermediary code

Learning objectives
Analyze a simple program written in the language of assembler
Use trace tables to find and verify the correctness of an
algorithm

Success criteria
Understand the use of assembly language
Distinguish the difference between assembly language and
others
Give definition for term "trace table"
Explain the purpose of using trace table
Build and fill trace table for checking results
Compare result of executed program and filled trace table

Any Questions???

Task 1

1 LDA SECOND
2 SUB FIRST
3 BRP SECBIG
4 LDA FIRST
5 OUT
6 HLT
7 SECBIG LDA SECOND
8 OUT
9 HLT
10 FIRST DAT 5
11 SECOND DAT 7

Fill the trace table

Determine what problem this program code
solves

Descriptor Score

11.5.1.4
use trace
tables to
find and
verify the
correctnes
s of an
algorithm

Correct filled Line column 1

Correct filled First column 1

Correct filled Second column 1

Correct filled Condition column 1

Correct filled Acc column 1

Correct filled Output column 1

Assessment
of criteria

Answer

LMC Branch Instructions (for
implementing loops)

• LDA ONE
STA COUNT
OUT
LOOPTOP LDA COUNT
ADD ONE
OUT
STA COUNT
SUB TEN
BRP ENDLOOP
BRA LOOPTOP
ENDLOOP HLT
ONE DAT 001
TEN DAT 010
COUNT DAT

• The LOOPTOP identifier is the
first instruction in the loop.

• When the code in the loop has
been executed, a BRANCH
always instruction (e.g. BRA
LOOPTOP) causes the LMC to
"jump" back to the start of the
loop so that the code section
can be executed again.

Task 2

LOOPTOP LDA COUNT
BRZ ENDLOOP
SUB ONE
STA COUNT
LDA TOTAL
ADD EIGHT
STA TOTAL
OUT
BRA LOOPTOP
ENDLOOP HLT
EIGHT DAT 008
COUNT DAT 003
ONE DAT 001
TOTAL DAT

1. Research this program and define result
using trace table

2.Determine what problem this program
code solves

Descriptor Score

11.5.1.4
use trace
tables to
find and
verify the
correctnes
s of an
algorithm

Correct filled Count column 1

Correct filled One column 1

Correct filled Total column 1

Correct filled Condition column 1

Correct filled Acc column 1

Correct filled Output column 1

Assessment
of criteria

Task 2

LOOPTOP LDA COUNT
BRZ ENDLOOP
SUB ONE
STA COUNT
LDA TOTAL
ADD EIGHT
STA TOTAL
OUT
BRA LOOPTOP
ENDLOOP HLT
EIGHT DAT 008
COUNT DAT 003
ONE DAT 001
TOTAL DAT

1. Research this program and define result
using trace table

2.Determine what problem this program
code solves

3.Run this program in LMC and check every
step

SUMMATIVE ASSESMENT FOR UNIT

11.1B – Programming paradigms

20 min

Reflection

