Unit 11.1B — Programming paradigms

LeSSOn @ distinguish between generations of
- - rogramming languages
objectives e Y

classify programming languages into
low and high-level

analyze the advantages and
03 disadvantages of high-level languages

analyze the advantages and
04 disadvantages of low-level languages

In the early days of computing, a computer could only be programmed using machine code. This was a difficult and tedious
task even to code up the most simple algorithms. Then the assembly language was developed. It was easier to code using
Assembly than machine code but it was still difficult. Later imperative high level programming languages were developed
that made coding accessible to many more people as programming was now much easier. Machine code, assembler and
imperative high level programming languages are referred to as first, second and third generation programming languages
respectively.

* Imperative programming is
programming paradigm
Fourth program describes a
SRS sequence of steps that
change the state of the
computer

First Generation Second Third

Generation Generation

» Declarative

Machine code Assembler Imperative high

level

* Declarative programming is a
paradigm that expresses the
desired result, not how to
achieve it.

Low level PL High level PL

Easier to modify as it uses English like
statements

Easier/faster to write code as it uses
Translated program requires less

Enalish like statements
Advantages memory .

Easier to debug during development due
to English like statements

Write code that can be executed faster
Total control over the code

Portable code — not designed to run on
Can work directly on memory locations | just one type of machine

Low level PL High level PL

Programs developed using low level
languages are machine dependent and
are not portable.

It takes additional translation times o

Error detection and mainteénance Is a translate the source to machine code.
tedious and time taking process.
High level programs are comparatively

Low level programs are more ermor slower than low level programs.

Disadvaniages prone.
Compared to low level programs, they

Low level programming usually results in are generally less memory efficient.
poor programming productivity.
Cannot communicate directly with the
Programmer must have additional hardware.

knowledge of the computer architecture
of particular machine, for programming
in low level [anguage.

ﬁ

Any Questions???

Learning Objective:

v
v

advantages and disadvantages of compilers
advantages and disadvantages of interpreters

v" Success criteria:

analyze the advantages and disadvantages of compilers and interpreters
compare Language translators like compiler and interpreter

¢+ JUP BUCLER

Learning objectives

Analyze a simple program written in the language of assembler
Use trace tables to find and verify the correctness of an
algorithm

Success criteria

Understand the use of assembly language

Distinguish the difference between assembly language and
others

Give definition for term "trace table"

Explain the purpose of using trace table

Build and fill trace table for checking results

Compare result of executed program and filled trace table

Addressing modes

When an instruction requires a value to be loaded into a register there are different
ways of identifying the value.

These different ways are described as the 'addressing modes'. In Section 6.01, it was
stated that, for our simple processor, two bits of the opcode in a machine code

instruction would be used to define the addressing mode. This allows four different
modes which are described in Table.

Addressing mode

Operand

Immediate

The value to be used in the instruction

An address which holds the value to be used in the

Direct , ,

instruction
indireet An address which holds the address which holds the value
ndirec - . _

to be used in the instruction

An address to which must be added what is currently in the
indexed

index register (IX) to get the address which holds the value
in the instruction

You might notice that some instructions use”#” and others don't
= number, [No hash] = address

Immediate addressing mode

Address Instruction

101 LDA #{12)

102

Direct addressing mode

LDD 105 Main memory

100 | 0100 0000
101 | 0110 1011
Accumulator 102 | 1111 1110
0001 0001 103 |1 1111 1010

104 | 0101 1101
105 | 0001 0001
106 | 1010 1000
107 | 1100 0001

A

200 | 1001 1111

Mark as follows:

- sensible annotation which makes clear 105 is the address used
- final value in Accumulator

Indirect addressin

Indirect Addressing:
LDI 103
ACC:
Answer:
0 1 0 0 1 0 1 1

e Memory address 103 contains the value 107
e So address 107 is the address from which to load the data

100
101
102
103
104

105

106
107

mode

Main memory

0000

Q010

1001

0011

0111

0011

0110

1011

0111

1110

1011

0001

0110

1000

0100

1011

2oo| 1001 1110 I

mode

LDX 101 Main memory

0100 0000
0110 1011
1111 1110

1111.1010
0101 1101 O

100
101

Accumulator 102
[0101 1101 | 103

105 | 0001 0001

Index Register 106 | 1010 1000

| 0000 0011 | 107 | 1100 0001
200 | 1001 1111

Mark as follows:
- IR contents converted to 3
B computed address of 101 + 3 = 104
// explanation: add contents of IR to address part of instruction
- then, ‘direct addressing’ to 104
- final value in Accumulator [max 4]

Any Questions???

1 LDA SECOND

2 SUB FIRST

3 BRP SECBIG

4 LDA FIRST
50UT

6 HLT

7 SECBIG LDA SECOND
8 OUT

9 HLT

10 FIRST DAT 5

11 SECOND DAT 7

Line

First

Second

Condition

Accumulator

Output

-m

11.5.1.4
use trace
tables to
find and
verify the
correctnes
sof an
algorithm

Assessment
of criteria

Correct filled Line column
Correct filled First column
Correct filled Second column
Correct filled Condition column
Correct filled Acc column

Correct filled Output column

T T S Y

Line | First | Second | Condition | Accumulator | Output
5 7
1 7
2 2
3 BRP is TRUE
7 7
8 7

LMC Branch Instructions (for
iImplementing loops)

 LDA ONE « The LOOPTOP identifier is the
STA COUNT first instruction in the loop.
OouT :
 When the code in the loop has
’l&gggﬁg LDA COUNT been executed, a BRANCH
ouT always instruction (e.g. BRA

LOOPTOP) causes the LMC to
"jump" back to the start of the
loop so that the code section
can be executed again.

STA COUNT
SUB TEN

BRP ENDLOOP
BRA LOOPTOP
ENDLOOP HLT
ONE DAT 001
TEN DAT 010
COUNT DAT

LOOPTOP LDA COUNT

BRZ ENDLOOP
SUB ONE

STA COUNT
LDA TOTAL
ADD EIGHT
STA TOTAL
ouT

BRA LOOPTOP
ENDLOOP HLT
EIGHT DAT 008
COUNT DAT 003
ONE DAT 001
TOTAL DAT

1. Research this program and define result

using trace table

2.Determine what problem this program

code solves

11.5.1.4
use trace
tables to
find and
verify the
correctnes
s of an
algorithm

Assessment
of criteria

-m

Correct filled Count column
Correct filled One column
Correct filled Total column
Correct filled Condition column
Correct filled Acc column

Correct filled Output column

e S = =

LOOPTOP LDA COUNT

BRZ ENDLOOP
SUB ONE

STA COUNT
LDA TOTAL
ADD EIGHT
STA TOTAL
OouT

BRA LOOPTOP
ENDLOOP HLT
EIGHT DAT 008
COUNT DAT 003
ONE DAT 001
TOTAL DAT

2.Determine what problem this program
code solves

3.Run this program in LMC and check every
step

SUMMATIVE ASSESMENT FOR UNIT

11.1B — Programming paradigms

20 Min

Reflection

