
Strings.

• 11.2.2.3 apply functions and string processing methods;

• 11.2.2.1 perform access to the elements of strings, lists, tuples;

• 11.2.2.2 use slicers to process the string;

• 11.2.3.6 determine the difference between different data
structures.

We already saw the Set collection in the previous lesson, which can store
more than one value. Today we are getting acquainted with the second
collection - String. And although we have often used the string type, this is the
first time we will consider a string as a collection of symbols.

String is a complex data type that stores a sequence of characters.

String

String data structure features:

• Strings are an ordered data structure. Each element has its own
index. Indexing starts from 0 (zero).

• Strings are an iterable data structure. You can iterate over the
elements of strings in two ways, by characters, and by indices.

• Each element of the string is represented by one character.

• Strings are an immutable data structure. You cannot replace a
character in a string without conversions.

Compare with Sets

We get the string when we enclose characters in quotation marks, for example,

"text", when we use input() when we use the conversion function str ().

Output:

We can already measure the length of a string using the len() function and
determine the occurrence of one string within another using the in
operation.

fixed_line = "programming"

print(len(fixed_line)) # print line length

word = input () # input string

print(word) # line output

number = 2020

line = str(number) # convert number to string

print(line)

print("program" in fixed_line) # checking the occurrence of one line in another

What the program will output?

Unlike sets, which contain unordered elements, the sequence of characters
in a string has its own order, and each character has its own address in
the string - an index by which it can be accessed.

You can refer to each character by its index. To do this, use the following entry:

s[1] - refer to the character with index 1 in string s.

s = "programming"

print(s[1]) # print the letter "r"

print(s[6] + s[5] + s[0]) # output of the word "map"

Indexing

What the program will output?

s = "programming"

print(s[1])

print(s[6] + s[5] + s[0])

Output:
r

map

When accessing an index that does not exist, we will get an error.

s = "programming"
print(s[12]) # IndexError: string index out of range # Index error: row index is
out of range

Negative indexes

If we want to correct one letter in a word, for example,

s = "pragramming"
s[2] = "o" # TypeError: 'str' object does not support item assignment

The Python interpreter throws an error - it means that it is impossible to change a

single character of the string, that is, the string is an immutable data type in

Python.

What the program will output?

s = "programming"

print(s[-3])

print(s[-4] + s[-3] + s[-10])

Output:
i

mir

s = "programming"
for item in s: # iterator item will iterate over each character of the string
print(item, end=" ") # output each character of the string separated by a space

Iterating over the elements of a string.

Since a string is a collection that consists of character elements, we can iterate over

each element of the string as we iterate over sets. To iterate over, we will use a for a

loop.

What the program will output?

string[START:STOP:STEP]

Slices

Slices have their own syntax.

The slice has three parameters, the starting element index START, the ending element

index STOP (not including the ending element), and the STEP:

Several examples with different parameters:

[:]/[::] # all elements,
[::2] # odd elements in order,
[1::2] # even elements in order,
[::-1] # all elements in reverse order,
[5:] # all elements starting from the sixth element,
[:5] # all elements before the sixth element,
[-2:1:-1] # all elements from the penultimate to the second in reverse order
(in all cases of sampling from a larger index to a smaller one, you must
specify a step!).

What the program will output?
s = "programming"
slice = s[:]
print(slice)

slice = s[:5]
print(slice)

slice = s[4:]
print(slice)

slice = s[::2]
print(slice)

slice = s[1::2]
print(slice)

slice = s[::-1]
print(slice)

"programming"

"progr"

"ramming"

"pormig"

"rgamn"

"gnimmargorp"

What the program will output?

s = "programming"
slice = s[2:9:3]
print(slice)

slice = s[10:0:-4]
print(slice)

slice = s[8:15]
print(slice)

slice = s[12::]
print(slice)

slice = s[:-5]
print(slice)

slice = s[-8:-4]
print(slice)

"oai"

"gmo"

"ing"

output empty string

"progra"

"gram"

s = "programming"
for i in s[::2]: #iterate over all elements that have even indices in string s
print(i, end=" ") # output "p o r m i g"

Slices

Slice can be used as a value of iterator.

Slices: subsequence

If you specify a slice with three
parameters S[a:b:d], the third
parameter specifies the step, same
as for function range().

Slices

String methods: find() and rfind()

• A method is a function that is bound to the
object. When the method is called, the method is
applied to the object and does some
computations related to it.

• Methods are invoked as
object_name.method_name(arguments).

For example, in s.find("e") the string method find()
is applied to the string s with one argument "e".

• Method find() searches a substring, passed as an
argument, inside the string on which it's called.
The function returns the index of the first
occurrence of the substring. If the substring is not
found, the method returns -1.

What will the program output?

s = 'Hello, world!’
print(s.find('e’))
print(s.find('ll’))
print(s.rfind('l’))
print(s.find('l'))

1
2

10
2

String methods: replace(old, new)

• Method replace() replaces all occurrences of a given substring with
another one.

• Syntax: s.replace(old, new) takes the string S and replaces all
occurrences of substring old with the substring new. Example:

What will the program output?

s = 'life is life’

print(s.replace('life','love'))

Love is love

replace(old, new, count)

• One can pass the third argument count, like this: s.replace(old, new,
count).

• It makes replace() to replace only first count occurrences and then
stop.

What will the program output?

s = 'life is life’

print(s.replace('life','love’),1)

Love is life

String methods: count()

• This method counts the number of occurrences of one string within
another string. The simplest form is this one: s.count(substring).

• Only non-overlapping occurrences are taken into account:

• If you specify three parameters s.count(substring, left, right), the
count is performed within the slice s[left:right].

What will the program output?

s = 'life is life’
print(s.count(' '))

2

Task 1 - You are given a string.
Using slices define

• In the first line, print the third character of this string.

• In the second line, print the second to last character of this string.

• In the third line, print the first five characters of this string.

• In the fourth line, print all but the last two characters of this string.

• In the fifth line, print all the characters of this string with even indices (remember
indexing starts at 0, so the characters are displayed starting with the first).

• In the sixth line, print all the characters of this string with odd indices (i.e. starting
with the second character in the string).

• In the seventh line, print all the characters of the string in reverse order.

• In the eighth line, print every second character of the string in reverse order,
starting from the last one.

• In the ninth line, print the length of the given string.

Tasks 2,3,4

• Given a string. Cut it into two "equal" parts (If the length of the string is
odd, place the center character in the first string, so that the first string
contains one more characther than the second). Now print a new string on
a single row with the first and second halfs interchanged (second half first
and the first half second) Don't use the statement if in this task.

• Given a string consisting of exactly two words separated by a space. Print a
new string with the first and second word positions swapped (the second
word is printed first).

• Given a string that may or may not contain a letter of interest. Print the
index location of the first and last appearance of f. If the letter f occurs only
once, then output its index. If the letter f does not occur, then do not print
anything.

Let's solve together!

s=str(input())
c=0
for x in s:

if x=="a":
c+=1

print(c)

Tasks

String Indexing
https://stepik.org/lesson/449974/step/1?unit=440357

String Slicing
https://stepik.org/lesson/449976/step/1?unit=440359

https://stepik.org/lesson/449974/step/1?unit=440357
https://stepik.org/lesson/449976/step/1?unit=440359

Task Indexing 0,25 points

Task Indexing 0,25 points

Task Slices 0,25 points

Task Slices 0,25 points

Reflection

• What knows?

• What remained unclear

• What is necessary to work
on?

Send a sticker
to in telegram that describes
the lesson)

