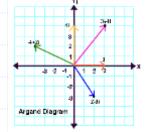
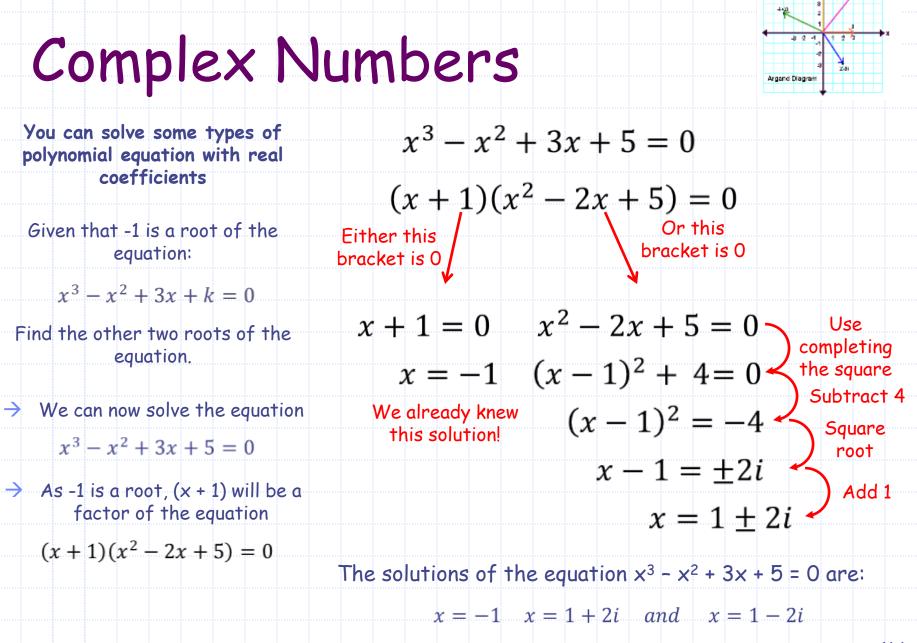

Алгебраның негізгі теоремасы, жоғары дәрежелі қарапайым теңдеулерді шешу

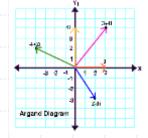
Оқу мақсаттары:

 12.2.2.3 алгебраның негізгі теоремасын және оның салдарын біледі және қолданады;



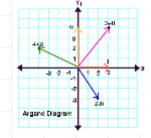
- Find the other two roots of the equation.
 - → If we substitute -1 in, the equation will balance...


$$x^3 - x^2 + 3x + 5 = 0$$


We now know the actual equation

$$x^3 - x^2 + 3x + 5 = 0$$

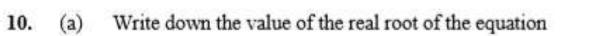
You can solve some types of polynomial equation with real coefficients $x^{2} + 3x$ x^3 Given that -1 is a root of the x^2 Divide x^3 by x equation: Multiply the divisor $2x^{2}3x + 5$ $x^{3} - x^{2} + 3x + k = 0$ by the answer and write it beneath $-2x^{2}$ Find the other two roots of the equation. Subtract this from the original equation \rightarrow We can now solve the equation Now divide $-2x^2$ by x 5x + 5 $x^3 - x^2 + 3x + 5 = 0$ Multiply the divisor → As -1 is a root, (x + 1) will be a N by this and continue factor of the equation these steps until you're finished! $x^3 - x^2 + 3x + 5$ $= (x + 1)(x^2 - 2x + 5)$



You can solve some types of polynomial equation with real coefficients

> In a cubic equation, either: → All 3 solutions are real

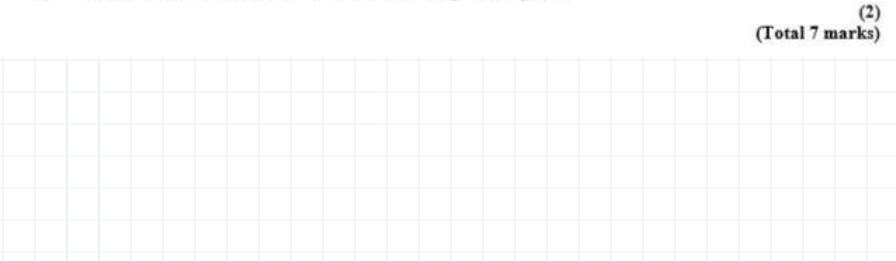
 \rightarrow One solution is real and the other 2 form a complex conjugate pair


You can solve some types of polynomial equation with real	$(x^2 - 6x + 1)$	$(2x^2 + 9x - 5) = 0$	
coefficients	We already have the solutions for	We need to the solution	
Given that 3 + i is a root of the quartic equation:	this bracket!	his one	
$2x^4 - 3x^3 - 39x^2 + 120x - 50 = 0$	3 + <i>i</i>	$2x^{2} + 9x - 5 = 0$ $(2x + 1)(x - 5) = 0$	Factorise
Solve the equation completely.	3-i	(2x+1)(x-5) = 0	
As one root is 3 + i, we know that another root will be 3 - i		$x = -\frac{1}{2} or x = 5$	
→ We can use these to find an expression which will factorise		$9x^2 + 120x - 50 = 0$	
into the original equation	Solutions are	x = 3 + i	
$x^2 - 6x + 10$ is a factor		x = 3 - i	
Divide the original equation by this!	All these will give the answer 0 when substituted in!	$x = -\frac{1}{2}$	
		<i>x</i> = 5	1H

Exam-Style Questions

Solve each of the following over the complex number field

$$z^4 = 8 - 8\sqrt{3}i$$


(level B)

$$x^3 - 64 = 0.$$

-

(b) Find the complex roots of $x^3 - 64 = 0$, giving your answers in the form a + ib, where a and b are real.

(c) Show the three roots of $x^3 - 64 = 0$ on an Argand diagram.

(1)

(4)

(level B)				
7 (i) Find the roots of the	equation			
	$z^2 + (2\sqrt{3})z +$	+4 = 0,		
giving your answers	in the form $x + iy$, where	x and y are real.		[2]
(ii) State the modulus and	d argument of each root.			[3]
(iii) Showing all your wo	1070		uation	
	$z^6 = -64$	ar waarde saan na centerie droe se		[3]
···				0.957.0

(level C)

6. Given that 2 and 5 + 2i are roots of the equation

$$x^3 - 12x^3 + cx + d = 0, \qquad c, d \in \mathbb{R},$$

(1)

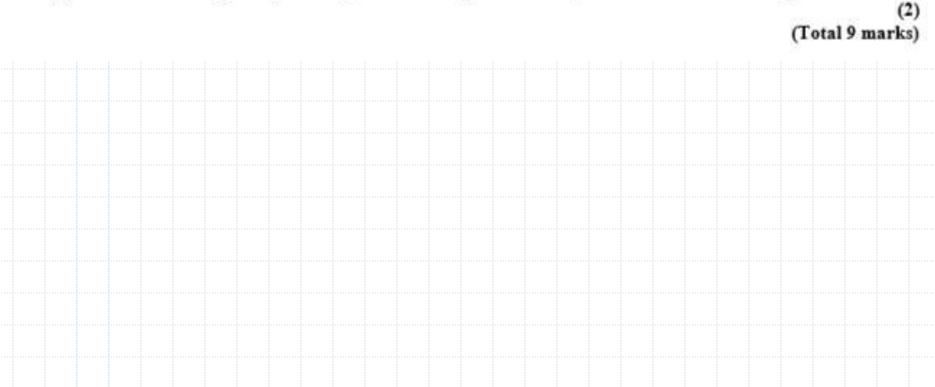
(5)

(2)

(Total 8 marks)

- (a) write down the other complex root of the equation.
- (b) Find the value of c and the value of d.
- (c) Show the three roots of this equation on a single Argand diagram.

level	-C)
	$f(x) = 2x^3 - 5x^2 + px - 5, p \in \mathbb{R}$
Give	en that $1 - 2i$ is a complex solution of $f(x) = 0$,
(a)	write down the other complex solution of $f(x) = 0$.
(b)	solve the equation $f(x) = 0$,
(c)	find the value of p.
	(Total 9 mark


(level C)

17. Given that 3 - 2i is a solution of the equation

$$x^4 - 6x^3 + 19x^2 - 36x + 78 = 0,$$

- (a) solve the equation completely,
- (b) show on a single Argand diagram the four points that represent the roots of the equation.

(7)

- 26. (a) By factorisation, show that two of the roots of the equation $x^3 27 = 0$ satisfy the quadratic equation $x^2 + 3x + 9 = 0$.
 - (b) Hence, or otherwise, find the three cube roots of 27, giving your answers in the form a + ib, where a, b ∈ R.
 - (c) Show these roots on an Argand diagram.

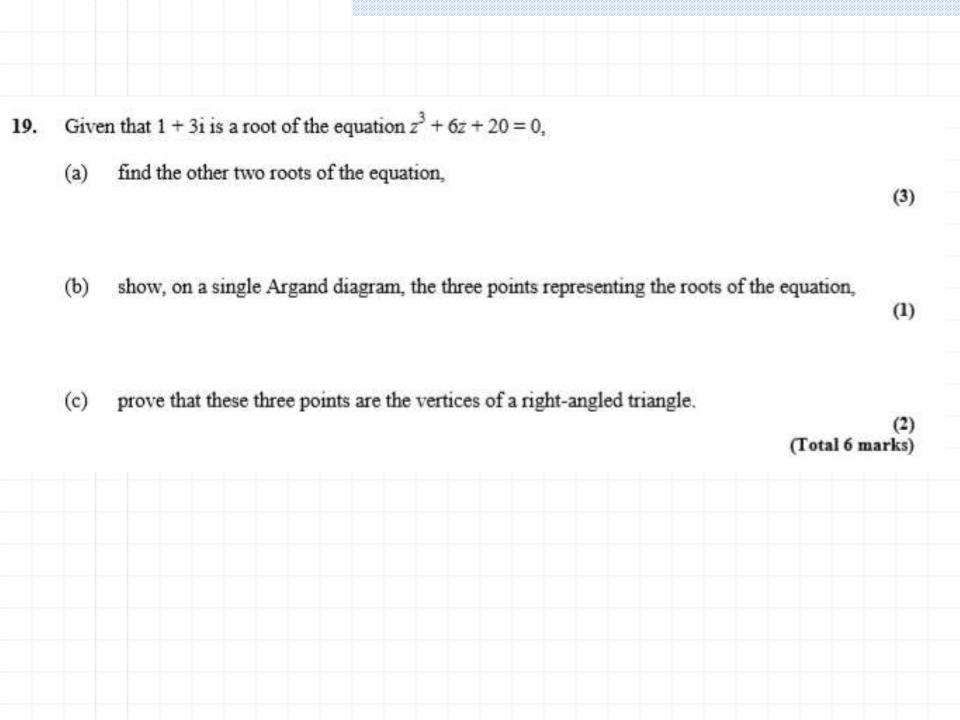
(2) (Total 7 marks)

(2)

(3)

21. Given that 3 + i is a root of the equation f(x) = 0, where

$$f(x) = 2x^3 + ax^2 + bx - 10,$$
 $a, b \in \mathbb{R},$


(a) find the other two roots of the equation f(x) = 0,

(b) find the value of a and the value of b.

(3) (Total 7 marks)

(4)

3 things I've learned today..

2 things I found interesting..

1 question I still have..