b Using the iterative formula $x_{n+1} = \sqrt{7 + \frac{11}{x_n}}$, with $x_0 = 3.2$, find x_1, x_2 and x_3 , giving the value of x_3 correct to 2 decimal places.

2
$$f(x) \equiv 4 \csc x - 5 + 2x$$
.

a Find the values of f(4) and f(5).

b Hence show that the equation f(x) = 0 has a root in the interval (4, 5).

The iterative formula $x_{n+1} = a + \frac{b}{\sin x_n}$, where a and b are constants, is used to find this root.

c Find the values of a and b.

d Starting with x₀ = 4.5, use the iterative formula with your values of a and b to find 3 further approximations of the root, giving your final answer correct to 3 decimal places.

3

The diagram shows the curve with equation y = f(x) where

$$f: x \to 2x + \ln(3x - 1), x \in \mathbb{R}, x > \frac{1}{3}$$

Given that $f(\alpha) = 0$,

a show that $0.4 < \alpha < 0.5$,

b use the iterative formula $x_{n+1} = \frac{1}{3}(1 + e^{-2x_n})$, with $x_0 = 0.45$, to find the value of α correct to 3 decimal places.

4 a On the same set of axes, sketch the curves $y = \cos x$ and $y = x^2$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

b Show that the equation $\cos x - x^2 = 0$ has exactly one positive and one negative real root.

c Show that the positive real root lies in the interval [0.8, 0.9].

d Use the iteration formula $x_{n+1} = \sqrt{\cos x_n}$ and the starting value $x_0 = 0.8$ to find the positive root correct to 2 decimal places.

5
$$f(x) = e^{5-2x} - x^5$$
.

Show that the equation f(x) = 0

a has a root in the interval (1.4, 1.5),

b can be written as $x = e^{1-kx}$, stating the value of k.

c Using the iteration formula $x_{n+1} = e^{1-kx_n}$, with $x_0 = 1.5$ and the value of k found in part b, find x_1 , x_2 and x_3 . Give the value of x_3 correct to 3 decimal places.

$$f: x \to 2^x + x^3 - 5, x \in \mathbb{R}$$
.

- a Show that there is a solution of the equation f(x) = 0 in the interval 1.3 < x < 1.4
- **b** Using the iterative formula $x_{n+1} = \sqrt[3]{5-2^{x_n}}$, with $x_0 = 1.4$, find x_1, x_2, x_3 and x_4 .
- c Hence write down an approximation for this solution of the equation f(x) = 0 to an appropriate degree of accuracy.

Another attempt is made to find the solution using the iterative formula $x_{n+1} = \frac{\ln (5 - x_n^3)}{\ln 2}$.

d Describe the outcome of this attempt.

7
$$f(x) = 2x^3 + 4x - 9.$$

- a Find f'(x).
- **b** Hence show that the equation f(x) = 0 has exactly one real root.
- c Show that this root lies in the interval (1.2, 1.3).
- **d** Use the iterative formula $x_{n+1} = \sqrt[3]{4.5 2x_n}$, with $x_0 = 1.2$, to find the root of f(x) = 0 correct to 2 decimal places.
- e Justify the accuracy of your answer.

8

The diagram shows part of the curve with equation $y = 3x + \ln x - x^2$ and the line y = x. Given that the curve and line intersect at the points A and B, show that

- a the x-coordinates of A and B are the solutions of the equation $x = e^{x^3 2x}$,
- **b** the x-coordinate of A lies in the interval (0.4, 0.5),
- c the x-coordinate of B lies in the interval (2.3, 2.4).
- **d** Use the iteration formula $x_{n+1} = e^{x_n^2 2x_n}$, with $x_0 = 0.5$, to find the x-coordinate of A correct to 2 decimal places.
- e Justify the accuracy of your answer to part d.
- 9 a On the same set of axes, sketch the graphs of $y = x^4$ and y = 5x + 2.
 - **b** Show that the equation $x^4 5x 2 = 0$ has exactly one positive and one negative real root.
 - c Use the iteration formula $x_{n+1} = \sqrt[4]{5x_n + 2}$, with $x_0 = 1.8$, to find x_1, x_2, x_3 and x_4 , giving the value of x_4 correct to 3 decimal places.
 - **d** Show that the equation $x^4 5x 2 = 0$ can be written in the form $x = \frac{a}{x^3 + b}$, stating the values of a and b.
- e Use the iteration formula $x_{n+1} = \frac{a}{x_n^3 + b}$, with $x_0 = -0.4$ and your values of a and b, to find the negative real root of the equation correct to 4 decimal places.

Жартылай бөлү әдісін қолданып табыңыз?

1 For each equation, show that it can be rearranged into the given iterative form. Use this and the given value of x_0 to find x_1 , x_2 and x_3 . Give your value of x_3 correct to 4 decimal places.

$$\mathbf{a} = 9 + 4x - 2x^3 = 0$$

a
$$9 + 4x - 2x^3 = 0$$
 $x_{n+1} = \sqrt[3]{2x_n + 4.5}$ $x_0 = 2$

$$x_0 = 2$$

b
$$e^x - 8x + 5 = 0$$

b
$$e^x - 8x + 5 = 0$$
 $x_{n+1} = \ln(8x_n - 5)$ $x_0 = 3$

$$x_0 = 3$$

c
$$\tan x - 5x + 13 = 0$$

$$x_{n+1} = \arctan(5x_n - 13)$$

$$x_0 = -1.2$$

c
$$\tan x - 5x + 13 = 0$$
 $x_{n+1} = \arctan(5x_n - 13)$ $x_0 = -1.2$
d $\ln x + \sqrt{x} + 1.4 = 0$ $x_{n+1} = e^{-(\sqrt{x_n} + 1.4)}$ $x_0 = 0.16$

$$\chi_{n+1} = e^{-(\sqrt{x_n}+1.4)}$$

$$c_0 = 0.16$$

For each equation, show that it can be rearranged into the given iterative form and state the 2 values of the constants a and b. Use this and the given value of x_0 to find x_1 , x_2 and x_3 . Give your value of x_3 correct to 3 decimal places.

$$a e^{2x-1} - 6x = 0$$

$$x_{n+1} = a(\ln bx_n + 1)$$

$$x_0 = 1.7$$

a
$$e^{2x-1} - 6x = 0$$
 $x_{n+1} = a(\ln bx_n + 1)$ $x_0 = 1.7$
b $\frac{2}{x} + \cos x - 3 = 0$ $x_{n+1} = \frac{a}{b - \cos x_n}$ $x_0 = 0.8$

$$x_{n+1} = \frac{a}{b - \cos x}$$

$$x_0 = 0.8$$

c
$$2x^3 - 6x - 11 = 0$$
 $x_{n+1} = \sqrt{a + \frac{b}{x_n}}$ $x_0 = 2$

$$\chi_{n+1} = \sqrt{a + \frac{b}{X_n}}$$

$$x_0 = 2$$

d
$$15 \ln (x+3) - 4x = 0$$
 $x_{n+1} = e^{ax_n} + b$ $x_0 = -2.5$

$$x_{n+1} = e^{ax_n} + t$$

$$x_0 = -2.5$$

In each case, use the given iteration formula and value of x_0 to find a root of the equation f(x) = 03 to the stated degree of accuracy. Justify the accuracy of your answers.

a
$$f(x) = 10^x + 3x - 4$$

a
$$f(x) = 10^x + 3x - 4$$
 $x_{n+1} = \log_{10} (4 - 3x_n)$ $x_0 = 0.44$

$$x_0 = 0.44$$

b
$$f(x) = x^2 + \frac{1}{x-5}$$
 $x_{n+1} = \log_{10}(4 - 3x_n)$ $x_0 = 0.5$ 2 significant figures

$$x_{n+1} = \sqrt{\frac{x_n^3 + 1}{5}}$$

$$x_0 = 0.5$$

$$f(x) = 30 - 5x + \sin 2$$

c
$$f(x) = 30 - 5x + \sin 2x$$
 $x_{n+1} = 6 + 0.2 \sin 2x_n$ $x_0 = 6$

$$x_0 = 6$$

d
$$f(x) = e^{4-x} - \ln x$$

d
$$f(x) = e^{4-x} - \ln x$$
 $x_{n+1} = 4 - \ln (\ln x_n)$

$$x_0 = 3.7$$