Тапсырмалар

- 1. a) $f(x) = \ln x 4x + 5$ функциясы берілген. [1.3;1.4] интервалында f(x) = 0 теңдеуінің шешімі бар екенін көрсетіңіз.
- b) $f(x) = \ln x 4x + 5$ функциясы [1.3;1.4] интервалында өспелі немесе кемімелі екенін табыңыз және көрсетіңіз.
- с) жартысын бөлу әдісін қолданып f(x) = 0 теңдеуінің [1.3;1.4] интервалындағы $\varepsilon = 0.01$ үшін жуық мәнін табыңыз.
- 2. а) $f(x) = e^{5+2x} x^5$ функциясы берілген. [1.4;1.5] интервалында f(x) = 0 теңдеуінің шешімі бар екенін көрсетіңіз.
- b) $x_{n+1} = e^{1+\frac{2}{5}x_n}$ итератив формуласын қолданып [1.4;1.5] интервалындағы $\varepsilon = 0.01$ үшін жуық мәнін табыңыз.
- 3. a) $f(x) = \frac{6x}{x^2 4x + 3}$ функциясын $\frac{A}{x 1} + \frac{B}{x 3}$ түрінде жазыңыз және A,B табыңыз.
- b) $\frac{6x}{x^2-4x+3}$, |x|<1 үшін Ньютон бином формуласын қолданып x дәрежесінің өсу ретімен жазып шығыңыз x^3 ке дейін.

2. $f(x) = x^3 + 2x^2 - 3x - 11$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \qquad x \neq -2.$$

The equation f(x) = 0 has one positive root α .

(2)

The iterative formula $x_{n+1} = \sqrt{\frac{3x_n + 11}{x_n + 2}}$ is used to find an approximation to α .

- (b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 .
- (c) Show that $\alpha = 2.057$ correct to 3 decimal places. (3)

 (Total 8 marks)

- 1 a Expand $(1-x)^{\frac{1}{2}}$, |x| < 1, in ascending powers of x up to and including the term in x^3 .
 - **b** By substituting x = 0.01 in your expansion, find the value of $\sqrt{11}$ correct to 9 significant figures.
- The series expansion of $(1 + 8x)^{\frac{1}{2}}$, in ascending powers of x up to and including the term in x^3 , is $1 + 4x + ax^2 + bx^3$, $|x| < \frac{1}{9}$.
 - a Find the values of the constants a and b.
 - **b** Use the expansion, with x = 0.01, to find the value of $\sqrt{3}$ to 5 decimal places.
- 3 a Expand $(9-6x)^{\frac{1}{2}}$, $|x| < \frac{3}{2}$, in ascending powers of x up to and including the term in x^3 , simplifying the coefficient in each term.
 - **b** Use your expansion with a suitable value of x to find the value of $\sqrt{8.7}$ correct to 7 significant figures.
- **3** a Show that the largest positive root of the equation $0 = x^3 + 2x^2 8x 3$ lies in the interval [2, 3].
 - **b** Use interval bisection to find this root correct to one decimal place.
- **a** Show that the equation $f(x) = 1 2\sin x$ has one root which lies in the interval [0.5, 0.8].
 - **b** Use interval bisection four times to find this root. Give your answer correct to one decimal place.
- **5** a Show that the equation $0 = \frac{x}{2} \frac{1}{x}$, x > 0, has a root in the interval [1, 2].
 - b Obtain the root, using interval bisection three times. Give your answer to two significant figures.
- **6** $f(x) = 6x 3^x$

The equation f(x) = 0 has a root between x = 2 and x = 3. Starting with the interval [2, 3] use interval bisection three times to give an approximation to this root.