

Cambridge International Examinations

In collaboration with Nazarbayev Intellectual Schools, Kazakhstan Grade 12

MATHEMATICS

Paper 3 MARK SCHEME Maximum Mark: 80 Grade 12 May 2014

This document consists of 8 printed pages.

[Turn over

Marks awarded

- The number of marks awarded for each part of the question should be recorded in the 'For Examiner's Use' column at the right side of the page using the annotations indicated in the mark scheme e.g. M1 A1
- Half marks cannot be awarded.
- The total number of marks should be added for each question and written on the front of the question paper, added up to give the final total for the paper.
- If a question instructs the candidates to use a particular method then that method must be used.
- In other questions any valid alternative method is acceptable, and candidates should be awarded equivalent marks for reaching a comparable stage in their solution.
- Particular care should be taken when marking questions where the working leads to a given solution the candidate must provide a full justification of the result.
- If a question requires an exact solution then the candidate must use exact values throughout their working.

Annotations and abbreviations

M Marks are awarded for using a correct method and are not lost for purely numerical errors.

A Marks are awarded for an accurate answer and depend on the preceding M marks. Therefore M0 A1 cannot be awarded.

B Marks are independent of M marks and are awarded for a correct final answer or correct intermediate stage.

DM or **DB** (or dep*) is used to indicate that a particular **M** or **B** mark is dependent on earlier **M** or **B** (asterisked) mark in the mark scheme.

Where follow through (ft) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer, whether or not it was correct.

Question	Answer	Mark	Additional Guidance
1	Attempt use of $(\pi)^{6}$ 36 dr	M1	
	Attempt use of (n) $\int_{1}^{1} \frac{3x+2}{3x+2} dx$		
		. 1	
	Obtain $12(\pi) \ln (3x + 2)$	AI	
	Use limits on their log integral in the correct	M1	
	order		
	Attempt use of at least one log law	M1	
	Obtain 24π ln2	A1	Answer is given so check all
		[5]	working
2 (a)	Attempt $P(x) = I(x) - C(x)$	M1	
	$Obtain - x^3 + 70.5x^2 - 270x - 2000$	A1	
	Attempt to differentiate their $P(x)$ function	M1	
	Obtain $-3x^2 + 141x - 270$	A1	
	Put $\frac{dy}{dx} = 0$ and attempt to solve their quadratic	M1	
	Obtain $x = 45$ and 2	A1	
		[6]	
2.(b)	Attempt to abtein their second derivation	 	
2 (D)	Attempt to obtain their second derivative	INI I	Allow equivalent methods, e.g. testing the sign of the first derivative
	Attempt to substitute their x value	M1	either side of 45 or finding $P(x)$
	Obtain -129 and conclude < 0 so max	A1	values either side of 45.
	State 37487.5 (dollars)	A1	
		[4]	

3 (a)	State or imply $z = 8(\cos(\pi + 2k\pi) +$	B1	Alternative methods should be
	$i \sin(\pi + 2k\pi))$		allowed
	Attempt to cube root 8 and divide angle	M1	
	expressions by 3	1411	
	Obtain two of $2(\cos \pi + i\sin \pi)$		
	$\frac{2(\cos n + 1 \sin n)}{2(\cos n + 1 \sin n)}$		
	$2(\cos \frac{1}{3} + 1\sin \frac{1}{3})$. 1	
	$2(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3})$	AI	
	Attempt to turn trig form to algebraic form	DM1	
	Obtain $1 + \sqrt{3}i$, $1 - \sqrt{3}i$ and -2	A1	
		[5]	
OR	State $z + 2$ is a factor	B1	
3(a)	Attempt division of $z^3 + 8$ by $z + 2$	M1	
	Obtain $z^2 - 2z + 4$	A1	
	Use the quadratic formula to solve their quadratic	DM1	
	Obtain $1 + \sqrt{3}i$, $1 - \sqrt{3}i$ and -2	A1	
		[5]	
3 (b)	Clear drawing showing points $(-2, 0), (1, \sqrt{3}),$	B1 [1]	
	$(1, -\sqrt{3})$	[+]	
4 (a)	$U_{\text{SP},z} = \frac{x - 200}{x - 200}$	M1	
	20		
	Obtain $z = 2$	A1	
	Attempt $P(x > 240) = 1 - P(z \le 2)$	M1	
	Obtain 0.0228	A1	
		[4]	
4 (b)	x - 200	M1	
	$Use z = \frac{1}{20}$		
	Obtain $z = 0$ and $z = -1$	A1	
	Attempt $P(-1 < z < 0) = P(z \le 1) - 0.5$	M1	
	Obtain 0.341(3)	A1	
		[4]	

5 (a)	State $(\cos x + i \sin x)^5 = \cos 5x + i \sin 5x$	B1	
	Attempt to expand $(\cos x + i \sin x)^5$	M1	Obtain at least two unsimplified
			terms
	Obtain at least $\cos^5 x - 10\cos^3 x \sin^2 x + 5\cos x$		
	$\sin^4 x$	A1	
	Replace $\sin^2 x$ with $(1 - \cos^2 x)$ in their		Must be seen correct at least once
	expansion	M1	Must be seen correct at least once
	Obtain $16\cos^5 x - 20\cos^3 x + 5\cos x$	A1	Answer given in question so full
		[5]	details must be given.
5 (b)	State or imply $16\cos^5 x - 20\cos^3 x + 5\cos x + 1$ = cos 5x + 1	B1	
	Attempt correct method to solve $\cos 5x = -1$	M1	Use correct order of operations
	Obtain $\frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5}$	A1	
		[3]	
6 (a)	State or imply Bin (5, 0.25)	B1	
	Use $P(X \ge 1) = 1 - P(0)$	M1	Accept $P(X = 1) + \dots + P(X = 5)$
	Obtain 0.763 (0.7626953)	A1	
		[3]	
6 (b)	State $P(X > 3)$	B1	
0(0)	Succe (A = 5)	DI	
	Attempt ${}^{5}C_{3} (0.25)^{3} (0.75)^{2} +$	M1	Binomial Coefficient or equivalent
	${}^{5}C_{4} (0.25)^{4} (0.75) + (0.25)^{5}$	1411	fraction
	Obtain 0.104 (0.1035156)	A1 [3]	Accept equivalent fractions
7 (a)	Attempt expansion	M1	Obtain at least e α 2 $ $ $-1 $ $ $ + 5 $ $
/ (a)		1411	if expanding by the first row and
	$2\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} - 1\begin{vmatrix} 1 & -1 \\ -3 & 1 \end{vmatrix} + 5\begin{vmatrix} 1 & 2 \\ -3 & 1 \end{vmatrix} =$		similarly for other expansions
	2(2+1) - (1-3) + 5(1+6)	Δ1	Answer given in the question
	or better $(6 + 2 + 35)$	[2]	
		L_1	

7 (b)	Use correct method for obtaining $ A_1 A_2 $ and	M1	30 1 5
	$ A_3 $		$ A_1 = \begin{vmatrix} 2 & 2 & -1 \end{vmatrix}$
			5 1 1
			2 30 5
			$ A_2 = \begin{vmatrix} 1 & 2 & -1 \end{vmatrix}$
			-3 5 1
			1 1
			2 1 30
			$ A_3 = \begin{vmatrix} 1 & 2 & 2 \end{vmatrix}$
			-3 1 5
	Attempt to divide their $ A_1 A_2 $ and $ A_3 $	M1	
	by 43		
	Obtain $x = 1$, $y = 3$ and $z = 5$	A3	
		[5]	
7 (c)	State (1, 3, 5)	A1ft	
		[1]	
		[+]	
8 (a)	Obtain $\mathbf{r}_2 - \mathbf{r}_1 = 9\mathbf{i} + \mathbf{j} - 4\mathbf{k}$	B1	
	and $\mathbf{r}_{3} - \mathbf{r}_{1} = 6\mathbf{i} + 2\mathbf{j} - 2\mathbf{K}$		
	i j k		
	State 9 1 -4		
	6 2 -2	B1	
	Attempt to evaluate	M1	
	Obtain $6\mathbf{i} - 6\mathbf{j} + 12\mathbf{k}$	4.1	
	U	AI	Note that this answer is given in the
		[4]	question

8 (b)	(x-3)	B1	
	State $y-1$		
	$\left(z-5\right)$		
	Attempt dot product with $6\mathbf{i} - 6\mathbf{j} + 12\mathbf{k} = 0$	M1	Must show sum of products
	Attempt simplification of unsimplified answer		
	Attempt simplification of unsimplified answer	MI	Must expand brackets and collect terms
	Obtain x - y + 2z = 12	A1	
		[4]	
8 (c)	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$		
	State $\mathbf{r} = \begin{vmatrix} 3 \\ - 1 \end{vmatrix} + \lambda \begin{vmatrix} 1 \\ - 1 \end{vmatrix}$	B1	
	(5) (-2)	[1]	
		[-]	
8 (d)	Attempt to solve $\begin{bmatrix} 2\\3\\5 \end{bmatrix} + \lambda \begin{bmatrix} 3\\1\\-2 \end{bmatrix} = 12$	M1	Alternative methods should be allowed
	Obtain $\lambda = -1.5$	A1	
	Obtain (-2.5, 1.5, 8)	A1	Accept any equivalent form
		[3]	
9 (a)	State rate implies $\frac{dT}{dt}$	B1	
	Difference between 30 and substance given by		
	(T-30)	B1	
	Cooling proportional to a constant factor given	B1	
	by $-k$	[3]	
9 (b)			
	State $\int \frac{dT}{T-30} dT = -\int k dt$	B1	
	Attempt integration of both sides	M1	
	Obtain $T - 30 = e^{-kt + c}$	A1	
	State or imply $e^{c} = A$ and conclude		
	$T = Ae^{-kt} + 30$	A1	Note that this answer is given in the
		[4]	question.

9 (c)	State $t = 0$ so $80 = A + 30$ and $A = 50$	B1	Alternative methods should be
	Attempt to solve $60 = \text{their } Ae^{-10k} + 30$	M1	allowed
	Obtain k = 0.05108	A1	or exact equivalent
	Obtain $t = 45.1$ minutes	A1	
		[4]	
10 (a)	State ${}^{5}C_{4}$	B1	Alternative methods should be
	State ${}^{8}C_{4}$	B1	allowed
	Divide and obtain $\frac{1}{14}$ or 0.0714	B1	
		[3]	
10 (b)	State or imply Bernoulli trials (geometric	B1	
	distribution) Use P(X = 7) = $(\frac{1}{2})(\frac{11}{2})^6$	M1	
	12 12	A1	
	Obtain 0.0494 or exact equivalent.	[3]	